Mod p decompositions of H-spaces; another approach

  • John McCleary
Homotopy Theory
Part of the Lecture Notes in Mathematics book series (LNM, volume 763)


Spectral Sequence Unstable Module Inverse Limit Projective Resolution Fibre Space 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    W. D. Barcus, On a theorem of Massey and Peterson, Quart. J. Math. (2) 19 (1968), 33–41.MathSciNetCrossRefzbMATHGoogle Scholar
  2. [2]
    A. K. Bousfield and D. M. Kan, Pairings and products in the homotopy spectral sequence, Trans.Amer.Math.Soc. 177 (1973), 319–343.MathSciNetCrossRefzbMATHGoogle Scholar
  3. [3]
    H. Cartan, Séminaire, Algèbres d'Eilenberg-MacLane et Homotopie, Ecole Normale Superiere, Paris(1954/55)Google Scholar
  4. [4]
    J. M. Cohen, Homotopy groups of inverse limits, Proc. London Math. Soc. (3) 27 (1973), 159–177.MathSciNetCrossRefzbMATHGoogle Scholar
  5. [5]
    J. Harper, Mod p decompositions of finite H-spaces, LNM No. 428, Springer (1974), 44–51.Google Scholar
  6. [6]
    _____, H-spaces with torsion, preprint.Google Scholar
  7. [7]
    P. G. Kumpel, Lie groups and products of spheres, Proc.Amer.Math. Soc. 16(1965), 1350–1356.MathSciNetCrossRefzbMATHGoogle Scholar
  8. [8]
    _____, Mod p equivalences of mod p H-spaces, Quart.J.Math. 23(1972), 173–178.MathSciNetCrossRefzbMATHGoogle Scholar
  9. [9]
    W. S. Massey and F. P. Peterson, On the mod 2 cohomology structure of certain fibre spaces, Amer.Math.Soc. Memoirs 74(1967).Google Scholar
  10. [10]
    J. McCleary, Ph.D. Thesis, Temple University (1978).Google Scholar
  11. [11]
    M. Mimura, G. Nishida and H. Toda, Mod p decomposition of compact Lie groups, Publ. RIMS, Kyoto Univ. 13(1977), 627–680.MathSciNetCrossRefzbMATHGoogle Scholar
  12. [12]
    M. Mimura and H. Toda, Cohomology operations and the homotopy of compact Lie groups-I, Topology 9(1970), 317–336.MathSciNetCrossRefzbMATHGoogle Scholar
  13. [13]
    J. P. Serre, Groupes d'homotopie et classes des groupes abéliens, Ann. of Math. 58 (1953), 258–294.MathSciNetCrossRefzbMATHGoogle Scholar
  14. [14]
    J. Stasheff, Sphere bundles over spheres as H-spaces mod p > 2, LNM No. 249, Springer (1971).Google Scholar
  15. [15]
    C. Wilkerson, Mod p decompositions of mod p H-spaces, LNM No.428, Springer(1974), 52–57.Google Scholar

Copyright information

© Springer-Verlag 1979

Authors and Affiliations

  • John McCleary
    • 1
    • 2
  1. 1.Temple UniversityPhiladelphia
  2. 2.Bates CollegeLewiston

Personalised recommendations