Advertisement

Applications and generalizations of the approximation theorem

  • J. P. May
Homotopy Theory
Part of the Lecture Notes in Mathematics book series (LNM, volume 763)

Keywords

Loop Space Springer Lecture Note Splitting Theorem Coefficient System Adams Spectral Sequence 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Bibliography

  1. 1.
    J. F. Adams. The Kahn-Priddy theorem. Proc. Camb. Phil. Soc. 73(1973), 45–55.MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    M. G. Barratt. A free group functor for stable homotopy. Proc. Symp. Pure Math Vol.22, pp.31–35. Amer.Math.Soc. 1971.Google Scholar
  3. 3.
    M. G. Barratt and P. J. Eccles. Γ+ structures III. The stable structure of ΩΣA. Topology 13(1974), 199–207.MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    J. Beck. On H-spaces and infinite loop spaces. Springer Lecture Notes in Mathematics Vol. 99, pp.139–153. 1969.MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    J. M. Boardman and R. M. Vogt. Homotopy invariant algebraic structures on topological spaces. Springer Lecture Notes in Mathematics Vol 347. 1973.Google Scholar
  6. 6.
    E. H. Brown, Jr. and S. Gitler. A spectrum whose cohomology is a certain cyclic module over the Steenrod algebra. Topology 12(1973), 283–295.MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    E. H. Brown, Jr. and F. P. Peterson. On the stable decomposition of Ω2Sn+r. Trans. Amer. Math. Soc. To appear.Google Scholar
  8. 8.
    E. H. Brown, Jr. and F. P. Peterson. The stable homotopy type of Ω2Sn+r. Quarterly J. Math. To appear.Google Scholar
  9. 9.
    J. Caruso. Thesis. Univ. of Chicago. In preparation.Google Scholar
  10. 10.
    J. Caruso, F. R. Cohen, J. P. May, and L. R. Taylor. James maps, Segal maps, and the Kahn-Priddy theorem. In preparation.Google Scholar
  11. 11.
    J. Caruso and S. Waner. An approximation to ΩnΣnX. To appear.Google Scholar
  12. 12.
    F. R. Cohen. Braid orientations and bundles with flat connections. Inventiones Math. 46(1978), 99–110.MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    F. R. Cohen, Little cubes and the classifying space for n-sphere fibrations. Proc. Symp. Pure Math. Vol.32 Part 2, pp.245–248. Amer. Math. Soc. 1978.CrossRefzbMATHGoogle Scholar
  14. 14.
    F. R. Cohen, T. J. Lada, and J. P. May. The homology of iterated loop spaces. Springer Lecture Notes in Mathematics Vol 533. 1976.Google Scholar
  15. 15.
    F. R. Cohen, M. E. Mahowald, and R. J. Milgram. The stable decomposition for the double loop space of a sphere. Proc. Symp. Pure Math. Vol 32 Part 2, pp.225–228. Amer. Math. Soc. 1978.MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    F. R. Cohen, J. P. May, and L. R. Taylor. Splitting of certain spaces CX. Math. Proc. Camb. Phil. Soc. To appear.Google Scholar
  17. 17.
    F. R. Cohen, J. P. May, and L. R. Taylor. Splitting of some more spaces. Math. Proc. Camb. Phil. Soc. To appear.Google Scholar
  18. 18.
    F. R. Cohen, J. P. May, and L. R. Taylor. K(Z, 0) and K(Z2, 0) as Thom spectra. To appear.Google Scholar
  19. 19.
    F. R. Cohen, J. P. May, and L. R. Taylor. James maps and En ring spaces. In preparation.Google Scholar
  20. 20.
    F. R. Cohen and L. R. Taylor. Computations of Gelfand-Fuks cohomology, the cohomology of function spaces, and the cohomology of configuration spaces. Springer Lecture Notes in Mathematics Vol. 657, pp. 106–143. 1978.MathSciNetCrossRefzbMATHGoogle Scholar
  21. 21.
    R. L. Cohen. On odd primary stable homotopy theory. Thesis. Brandeis. 1978.Google Scholar
  22. 22.
    R. L. Cohen. The geometry of Ω2S3 and braid orientations. In preparation.Google Scholar
  23. 23.
    D. Davis. The antiautomorphism of the Steenrod algebra. Proc. Amer. Math. Soc. 44(1974), 235–236.MathSciNetCrossRefzbMATHGoogle Scholar
  24. 24.
    A. Dold and R. Thom. Quasifaserungen und unendliche symmetrische Produkte. Annals of Math. 67(1958), 239–281.MathSciNetCrossRefzbMATHGoogle Scholar
  25. 25.
    E. Dyer and R. K. Lashof. Homology of iterated loop spaces. Amer. J. Math. 84(1962), 35–88.MathSciNetCrossRefzbMATHGoogle Scholar
  26. 26.
    I. M. James. Reduced product spaces. Annals of Math. 62(1955), 170–197.MathSciNetCrossRefzbMATHGoogle Scholar
  27. 27.
    D. S. Kahn. On the stable decomposition of ΩSA. Springer Lecture Notes in Mathematics Vol 658, pp. 206–214. 1978.MathSciNetCrossRefGoogle Scholar
  28. 28.
    D. S. Kahn and S. B. Priddy. The transfer and stable homotopy theory. Math. Proc. Camb. Phil. Soc. 83(1978), 103–111.MathSciNetCrossRefzbMATHGoogle Scholar
  29. 29.
    P. O. Kirley. On the indecomposability of iterated loop spaces. Thesis. Northwestern. 1975.Google Scholar
  30. 30.
    U. Koschorke and B. Sanderson. Self intersections and higher Hopf invariants. Topology 17(1978), 283–290.MathSciNetCrossRefzbMATHGoogle Scholar
  31. 31.
    G. Lewis. The stable category and generalized Thom spectra. Thesis. Chicago. 1978.Google Scholar
  32. 32.
    A. Liulevicius. The factorization of cyclic reduced powers by secondary cohomology operations. Memoirs Amer. Math. Soc. 42. 1962.Google Scholar
  33. 33.
    M. Mahowald. A new infinite family in 2π*s. Topology 16(1977), 249–256.MathSciNetCrossRefzbMATHGoogle Scholar
  34. 34.
    M. Mahowald and A. Unell. Bott periodicity at the prime 2 and the unstable homotopy of spheres. Preprint.Google Scholar
  35. 35.
    M. Mahowald. Some homotopy classes generated by ηj. These proceedings.Google Scholar
  36. 36.
    J. P. May. The geometry of iterated loop spaces. Springer Lecture Notes in Mathematics Vol 271. 1972.Google Scholar
  37. 37.
    J. P. May (with contributions by F. Quinn, N. Ray, and J. Tornehave). E ring spaces and E69-4 ring spectra. Springer Lecture Notes in Mathematics Vol 577. 1977.Google Scholar
  38. 38.
    J. P. May. Infinite loop space theory. Bull. Amer. Math. Soc. 83(1977), 456–494.MathSciNetCrossRefzbMATHGoogle Scholar
  39. 39.
    J. P. May. Infinite loop space theory revisited. Proc. conf. alg. top. Waterloo, 1978.Google Scholar
  40. 40.
    D. McDuff. Configuration spaces of positive and negative particles. Topology 14(1975), 91–107.MathSciNetCrossRefzbMATHGoogle Scholar
  41. 41.
    R. J. Milgram. Iterated loop spaces. Annals of Math. 84(1966), 386–403.MathSciNetCrossRefzbMATHGoogle Scholar
  42. 42.
    J. W. Milnor. On the construction FK. In J. F. Adams. Algebraic Topology, a student's guide. London Math. Soc. Lecture Note Series 4, pp. 119–136. 1972.Google Scholar
  43. 43.
    G. Saitati. Loop spaces and K-theory. J. London Math. Soc. 9(1975), 423–428.MathSciNetCrossRefGoogle Scholar
  44. 44.
    B. Sanderson. The geometry of Mahowald orientations. These proceedings.Google Scholar
  45. 45.
    G. B. Segal. Configuration-spaces and iterated loop spaces. Invent. Math. 21(1973), 213–222.MathSciNetCrossRefzbMATHGoogle Scholar
  46. 46.
    G. B. Segal. Operations in stable homotopy theory. London Math. Soc. Lecture Note Series 11, pp. 105–110. 1974.Google Scholar
  47. 47.
    V. P. Snaith. A stable decomposition of ΩnSnX. J. London Math. Soc. 7(1974), 577–583.MathSciNetCrossRefzbMATHGoogle Scholar
  48. 48.
    V. P. Snaith. On K*2X;Z2). Quarterly J. Math. 26(1975), 421–436.MathSciNetCrossRefGoogle Scholar
  49. 49.
    N. E. Steenrod. Cohomology operations and obstructions to extending continuous functions. Advances in Math. 8(1972), 371–416.MathSciNetCrossRefzbMATHGoogle Scholar
  50. 50.
    H. Toda. Order of the identity class of a suspension space. Annals of Math. 78(1963), 300–323.MathSciNetCrossRefzbMATHGoogle Scholar
  51. 51.
    R. J. Wellington. The A-algebra H*Ω0n+1Σn+1X, the Dyer-Lashof algebra, and the Λ-algebra. Thesis. Chicago, 1977.Google Scholar
  52. 52.
    S. W. Yang. Thesis. Brandeis. 1978.Google Scholar

Copyright information

© Springer-Verlag 1979

Authors and Affiliations

  • J. P. May

There are no affiliations available

Personalised recommendations