On the Bi-stable J-homomorphism

  • K. Knapp
Homotopy Theory
Part of the Lecture Notes in Mathematics book series (LNM, volume 763)


Stable Homotopy Adams Spectral Sequence Stable Homotopy Group Stable Homotopy Theory Complex Bordism 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    J.F. Adams: On the groups J(X)-II, Topology 3(1965) 137–171MathSciNetCrossRefzbMATHGoogle Scholar
  2. [2]
    J.C. Becker, R.E. Schultz: Equivariant function spaces and stable homotopy theory,Comment.Math.Helv.44(1974) 1–34MathSciNetCrossRefzbMATHGoogle Scholar
  3. [3]
    K. Knapp: On the K-homology of classifying spaces, Math.Ann. 233(1978) 103–124MathSciNetCrossRefzbMATHGoogle Scholar
  4. [4]
    K. Knapp: Rank and Adams filtration of a Lie group, Topology 17 (1978) 41–52MathSciNetCrossRefzbMATHGoogle Scholar
  5. [5]
    R.M. Seymour: Vector bundles invariant under the Adams operations, Quart.J.Math.Oxford(2) 25(1974) 395–414MathSciNetCrossRefzbMATHGoogle Scholar
  6. [6]
    L. Smith: On realizing complex bordism modules.Applications to the homotopy of spheres, Amer.J.Math. 92(1970) 793–856MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer-Verlag 1979

Authors and Affiliations

  • K. Knapp

There are no affiliations available

Personalised recommendations