Advertisement

Decompositions of loop spaces and applications to exponents

  • F. R. Cohen
  • J. C. Moore
  • J. A. Neisendorfer
Homotopy Theory
Part of the Lecture Notes in Mathematics book series (LNM, volume 763)

Keywords

Homotopy Group Decomposition Theorem Loop Space Homotopy Theory High Torsion 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    J.F. Adams, The sphere, considered as an H-space mod p, Quart J. Math. Oxford Ser. (2), 12 (1961), 52–60.MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    M.G. Barratt, Spaces of finite characteristic, Quart, J. Math. Oxford Ser. (2), 11 (1960), 124–136.MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    F.R. Cohen, J.C. Moore, and J.A. Neisendorfer, Torsion in homotopy groups, to appear in Ann. of Math.Google Scholar
  4. 4.
    _____, The double suspension and exponents of the homotopy groups of spheres, to appear.Google Scholar
  5. 5.
    _____, Moore spaces have exponents, to appear.Google Scholar
  6. 6.
    _____, James-Hopf invariants and homology, to appear.Google Scholar
  7. 7.
    B. Gray, On the sphere of orgin of infinite families in the homotopy groups of spheres, Topology, 8 (1969), 219–232.MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    I.M. James, Reduced product spaces, Ann. of Math., 62 (1955), 170–197.MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    I.M. James, On the suspension sequence, Ann. of Math., 65 (1957), 74–107.MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    J.W. Milnor, On the construction FK, in Algebraic Topology — a student's guide by J.F. Adams, Cambridge Univ. Press, 1972.Google Scholar
  11. 11.
    J.A. Neisendorfer, Unstable homotopy theory modulo an odd prime, to appear.Google Scholar
  12. 12.
    P.S. Selick, Odd primary torsion in Πk(S3), to appear in Topology.Google Scholar
  13. 13.
    J-P. Serre, Groupes d'homotopie et classes de groupes abeliens, Ann. of Math., 58 (1953), 258–294.MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    H. Toda, On the double suspension E2, J. Inst. Polytech. Osaka City Univ. Ser. A, 7 (1956), 103–145.MathSciNetGoogle Scholar

Copyright information

© Springer-Verlag 1979

Authors and Affiliations

  • F. R. Cohen
    • 1
    • 2
    • 3
    • 4
  • J. C. Moore
    • 1
    • 2
    • 3
    • 4
  • J. A. Neisendorfer
    • 1
    • 2
    • 3
    • 4
  1. 1.Northern Illinois UniversityUSA
  2. 2.Temple UniversityUSA
  3. 3.Princeton UniversityUSA
  4. 4.Fordham UniversityUSA

Personalised recommendations