Skip to main content

Deligne-Lusztig varieties and group codes

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Mathematics ((LNM,volume 1518))

Abstract

We construct algebraic geometric codes using the Deligne-Lusztig varieties [De-Lu] associated to a connected reductive algebraic group G defined over a finite field \(\mathbb{F}_q \), with Frobenius map F. The codes are obtained as geometric Goppa codes, that is linear error-correcting codes constructed from algebraic varieties [Go1] and [Go2]. The finite group G F of Lie type acts as \(\mathbb{F}_q \)-rational automorphisms on the codes and they become modules over the group algebra \(\mathbb{F}_q \)[G F ]. Algebraic geometric codes with a group algebra structure induced from automorphisms of the underlying variety have been constructed and studied in [Ha1], [Ha2], [Ha-St] and [V].

The Deligne-Lusztig varieties used in the construction of the codes have in some cases many \(\mathbb{F}_q \)-rational points, which ensures that the codes have a large word length. In case G is of type 2 A 2 the Deligne-Lusztig curve considered have 1+q 3 points over \(\mathbb{F}_{q^2 } \). In case G is a Suzuki group 2 B 2, respectively a Ree group 2 G 2, the Deligne-Lusztig curves considered have 1+q 2, respectively 1 + q 3, points over \(\mathbb{F}_q \). In relation to their genera these numbers are maximal as determined by the “explicit formulas” of Weil.

Supported by the Danish National Science Foundation.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   54.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   69.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. S.D. Berman, On the Theory of Group Codes, Kibernetika, 3 (1967), 31–39.

    MathSciNet  MATH  Google Scholar 

  2. R..W. Carter, Simple Groups of Lie Type, John Wiley and Sons Ltd, 1972.

    Google Scholar 

  3. R..W. Carter, Finite Groups of Lie Type, John Wiley and Sons Ltd, 1985.

    Google Scholar 

  4. P. Charpin, Codes idéaux de certaines algèbres modulaires, These de 3ième cycle, Université de Paris VII (1982).

    Google Scholar 

  5. P. Charpin, The extended Reed-Solomon codes considered as ideals of a modular algebra, Annals of Discrete Math. 17 (1983), 171–176.

    MathSciNet  MATH  Google Scholar 

  6. P. Charpin, A new description of some polynomial Codes: the primitive generalized Reed-Muller codes, preprint.

    Google Scholar 

  7. C. Chevalley, Introduction to the theory of algebraic functions of one variable, New York 1951.

    Google Scholar 

  8. I. Damgård and P. Landrock, Ideals and Codes in Group Algebras, Aarhus Universitet, Preprint Series.

    Google Scholar 

  9. P. Deligne and G. Lusztig, Representations of reductive groups over finite fields, Ann. of Math. 103 (1976), 103–161.

    Article  MathSciNet  MATH  Google Scholar 

  10. V. D. Goppa, Codes on algebraic Curves, Dokl. Akad. NAUK, SSSR, 259 (1981), 1289–1290; (Soviet Math. Dokl. 24 (1981), 170–172.)

    MathSciNet  MATH  Google Scholar 

  11. V. D. Goppa, Algebraico-geometric Codes, Izv. Akad. NAUK, SSSR, 46 (1982); (Math. U.S.S.R. Izvestiya, 21 (1983), 75–91.)

    Google Scholar 

  12. J. P. Hansen, Codes on the Klein Quartic, Ideals and decoding, IEEE Trans. on Inform. Theory 33 (1987).

    Google Scholar 

  13. J. P. Hansen, Group Codes on Algebraic Curves, Mathematica Gottingensis, Heft 9, Feb. 1987.

    Google Scholar 

  14. J. P. Hansen and H. Stichtenoth, Group Codes on Certain Algebraic Curves with Many Rational Points, Aarhus Universitet, Preprint Series 1988/89 No. 7. (to appear in Applicable Algebra in Engineering, Communication and Computing).

    Google Scholar 

  15. H. Hasse, Theorie der relativ zyklischen algebraischen Funktionenkörper, J. Reine Angew. Math. 172 (1934), 37–54.

    MathSciNet  MATH  Google Scholar 

  16. H. W. Henn, Funktionenkörper mit grosser Automorphismengruppe, J. Reine u. Angew. Math. 302 (1978), 96–115.

    MathSciNet  MATH  Google Scholar 

  17. S. Lang, Algebraic Groups over finite Fields, Amer. J. Math. 78 (1956), 555–563.

    Article  MathSciNet  MATH  Google Scholar 

  18. P. Landrock and O. Manz, Classical Codes as Ideals in Group Algebras Aarhus Universitet, Preprint Series, 1986/87 No. 18.

    Google Scholar 

  19. G. Lusztig, Representations of finite Chevalley groups Regional conference series in mathematics; no. 39. AMS 1978.

    Google Scholar 

  20. G. Lusztig, Representations of finite Chevalley groups Re

    Google Scholar 

  21. J. P. Pedersen, A Function Field related to the Ree group, to appear in the proceedings.

    Google Scholar 

  22. J. P. Serre, Sur le nombre des points rationnels d'une courbe algébrique sur un corps fini, C. R. Acad. Sci. Paris Sér. I Math, 296 (1983), 397–402.

    MATH  Google Scholar 

  23. J.-P. Serre, Corps locaux, Paris 1962.

    Google Scholar 

  24. J.-P. Serre, Annuaire du Collège de France, 1983–1984.

    Google Scholar 

  25. H. Stichtenoth, On Automorphisms of Geometric Goppa Codes, (to appear in J. of Alg).

    Google Scholar 

  26. H. Stichtenoth, A note on Hermitian Codes over GF(q 2), IEEE Trans. on Inform. Theory 34 (1988), 1345–1348.

    Article  MathSciNet  MATH  Google Scholar 

  27. H. Stichtenoth, Self-dual Goppa Codes, J. Pure Appl. Algebra 55 (1988), 199–211.

    Article  MathSciNet  MATH  Google Scholar 

  28. R. Steinberg, Endomorphisms of linear algebraic groups, Mem. Amer. Math. Soc., 80 (1968).

    Google Scholar 

  29. H. J. Tiersma, Remarks on Codes from Hermitian Curves, IEEE Trans. on Inform. Theory 33 (1987), 605–609.

    Article  MathSciNet  MATH  Google Scholar 

  30. M. A. Tsfasman, S. G. Vladut and Th. Zink, Modular curves, Shimura curves and Goppa codes, better than Varshamov-Gilbert bound, Math. Nachr., 109 (1982), 13–28.

    Article  MathSciNet  MATH  Google Scholar 

  31. S. G. Vladut, Modular Codes as Group Codes, MAT-REPORT NO.1990-25, Matematisk Institut, DanmarksTekniske Højskole.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Henning Stichtenoth Michael A. Tsfasman

Rights and permissions

Reprints and permissions

Copyright information

© 1992 Springer-Verlag

About this paper

Cite this paper

Hansen, J.P. (1992). Deligne-Lusztig varieties and group codes. In: Stichtenoth, H., Tsfasman, M.A. (eds) Coding Theory and Algebraic Geometry. Lecture Notes in Mathematics, vol 1518. Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0087993

Download citation

  • DOI: https://doi.org/10.1007/BFb0087993

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-55651-0

  • Online ISBN: 978-3-540-47267-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics