Classification theorems for representations of semisimple lie groups

  • A. W. Knapp
  • Gregg Zuckerman
Conference paper
Part of the Lecture Notes in Mathematics book series (LNM, volume 587)


Weyl Group Unitary Representation Parabolic Subgroup Discrete Series Principal Series 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    M. DUFLO, Représentations irréductibles des groupes semi-simples complexes, in Analyse Harmonique sur les Groupes de Lie, Lecture Notes in Mathematics 497 (1975), 26–88, Springer-Verlag, New-York.CrossRefGoogle Scholar
  2. [2]
    M. DUFLO, Représentations unitaires irréductibles des groupes simples complexes de rang deux, to appear.Google Scholar
  3. [3]
    HARISH-CHANDRA, Discrete series for semisimple groups II, Acta Math. 116 (1966), 1–111.MathSciNetCrossRefzbMATHGoogle Scholar
  4. [4]
    H. HECHT and W. SCHMID, A proof of Blattner's conjecture, Inventiones Math. 31 (1975), 129–154.MathSciNetCrossRefzbMATHGoogle Scholar
  5. [5]
    T. HIRAI, On irreducible representations of the Lorentz group of n-th order, Proc. Japan Acad. 38 (1962), 83–87.MathSciNetCrossRefzbMATHGoogle Scholar
  6. [6]
    A.W. KNAPP, Weyl group of a cuspidal parabolic, Ann. Sci. Ecole Norm. Sup. 8 (1975), 275–294.MathSciNetzbMATHGoogle Scholar
  7. [7]
    A.W. KNAPP and E.M. STEIN, The existence of complementary series, in Problems in Analysis, a Symposium in Honor of Salomon Bochner, R.C. Gunning (ed.), 249–259, Princeton University Press, Princeton, New Jersey, 1970.Google Scholar
  8. [8]
    A.W. KNAPP and E.M. STEIN, Intertwining operators for semisimple groups, Ann. of Math. 93 (1971), 489–578.MathSciNetCrossRefzbMATHGoogle Scholar
  9. [9]
    A.W. KNAPP and E.M. STEIN, Singular integrals and the principal series III, Proc. Nat. Acad. Sci. U.S.A. 71 (1974), 4622–4624.MathSciNetCrossRefzbMATHGoogle Scholar
  10. [10]
    A.W. KNAPP and E.M. STEIN, Singular integrals and the principal series IV, Proc. Nat. Acad. Sci. U.S.A. 72 (1975), 2459–2461.MathSciNetCrossRefzbMATHGoogle Scholar
  11. [11]
    A.W. KNAPP and G. ZUCKERMAN, Classification of irreducible tempered representations of semisimple Lie groups, Proc. Nat. Acad. Sci. U.S.A. 73 (1976), 2178–2180.MathSciNetCrossRefzbMATHGoogle Scholar
  12. [12]
    B. KOSTANT, On the existence and irreducibility of certain series of representations, in Lie groups and their representations, Summer School of the Bolyai Janos Mathematical Society, I.M. Gelfand (ed.) 231–329, Wiley, New-York, 1975.Google Scholar
  13. [13]
    H. KRALJEVIČ, Representations of the universal covering group of the group SU(n, 1), Glasnik Mat. 8 (1973), 23–72.zbMATHGoogle Scholar
  14. [14]
    R.P. LANGLANDS, On the classification of irreducible representations of real algebraic groups, mimeographed notes, Institute for Advanced Study, Princeton, New Jersey, 1973.Google Scholar
  15. [15]
    E.M. STEIN, Analysis in matrix spaces and some new representations of SL (N, C), Ann. of Math. 86 (1967), 461–490.MathSciNetCrossRefzbMATHGoogle Scholar
  16. [16]
    P. TROMBI, The tempered spectrum of a real semisimple Lie group, Amer. J. Math., to appear. Google Scholar
  17. [17]
    M. TSUCHIKAWA, On the representations of SL (3, C), III, Proc. Japan Acad. 44 (1968), 130–132.MathSciNetCrossRefzbMATHGoogle Scholar
  18. [18]
    I.J. VAHUTINSKII, Unitary representations of GL (3, R), Math. Sbornik 75 (117) (1968), 303–320 (in Russian).MathSciNetGoogle Scholar
  19. [19]
    N. WALLACH, Cyclic vectors and irreducibility for principal series representations, Trans. Amer. Math. Soc. 158 (1971), 107–113.MathSciNetzbMATHGoogle Scholar
  20. [20]
    D.P. ZELOBENKO, Harmonic analysis on semisimple complex Lie groups, Ed. Nauka, Moscow, 1975 (in Russian).zbMATHGoogle Scholar
  21. [21]
    D.P. ZELOBENKO and M.A. NAIMARK, A characterization of completely irreducible representations of a semisimple complex Lie group, Soviet Math. Dokl. 7 (1966), 1403–1406.Google Scholar
  22. [22]
    G. ZUCKERMAN, Tensor products of finite and infinite dimensional representations of semisimple Lie groups, to appear.Google Scholar

Copyright information

© Springer-Verlag 1977

Authors and Affiliations

  • A. W. Knapp
    • 1
    • 2
  • Gregg Zuckerman
    • 1
    • 2
  1. 1.Department of MathematicsCornell UniversityIthacaUSA
  2. 2.Department of MathematicsYale UniversityNew HavenUSA

Personalised recommendations