Advertisement

La Formule de Plancherel Pour un Groupe de Lie Resoluble Connexe

  • J. Y. Charbonnel
Conference paper
Part of the Lecture Notes in Mathematics book series (LNM, volume 587)

Keywords

Condition Suivante Simplement Connexe Convergeant Vers Support Compact Modulo 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Bibliographie

  1. [1]
    P. BERNAT et AL-Représentations des groupes de Lie résolubles. Dunod 1972.Google Scholar
  2. [2]
    J. DIXMIER, M. DUFLO, M. VERGNE-Sur la représentation coadjointe d'une algèbre de Lie.Google Scholar
  3. [3]
    M. DUFLO, C.C. MOORE-On the regular representations of a non-unimodular locally compact group. (A paraǐre dans Journal of Funct. Analysis).Google Scholar
  4. [4]
    -M. DUFLO, M. RAIS-Sur l'analyse harmonique sur les groupes de Lie résolubles. (A paraǐre)Google Scholar
  5. [5]
    J. GLIMM-Locally compact transformation groups. Trans. Amer. Math. Soc. 101 (1961), p. 124–138.MathSciNetCrossRefzbMATHGoogle Scholar
  6. [6]
    A.A. KIRILLOV-Unitary representations of nilpotent Lie groups. Russ. Math. Surv. 17 (1962), p. 53–104.MathSciNetCrossRefzbMATHGoogle Scholar
  7. [7]
    A. KLEPPNER and R.L. LIPSMAN-The Plancherel formula for group extension.-Annales E. N. S. (1972), p. 459–516.Google Scholar
  8. [8]
    C. C. MOORE-Harmonic Analysis on Homogeneous Spaces. Proc. of Symposia in pure Math. (XXVI).Google Scholar
  9. [9]
    L. PUKANSZKY-Unitary representations of solvable Lie groups. Annales E. N. S. (1971), p. 457–608.Google Scholar
  10. [10]
    L. PUKANSZKY-The primitive ideal space of solvable Lie groups. Invent. Math. 22 (1973), p. 75–118.MathSciNetCrossRefzbMATHGoogle Scholar
  11. [11]
    L. PUKANSZKY-Characters of connected Lie groups. Acta Math. 133 (1974), p. 81–137.MathSciNetCrossRefzbMATHGoogle Scholar
  12. [12]
    M. VERGNE-Représentations des groupes de Lie résolubles. Séminaire Bourbaki (1974).Google Scholar
  13. [13]
    G. HOCHSCHILD-The structure of Lie groups. Holden-Day 1965.Google Scholar
  14. [14]
    J.Y. CHARBONNEL-La mesure de Plancherel pour les groupes de Lie résolubles connexes. C.R. Acad. Sc. Paris, t. 282 (24 Mai 1976).Google Scholar
  15. [15]
    J.Y. CHARBONNEL-La mesure de Plancherel pour les groupes de Lie résolubles connexes. Thèse 3e Cycle (Université Paris VII-Paris).Google Scholar

Copyright information

© Springer-Verlag 1977

Authors and Affiliations

  • J. Y. Charbonnel
    • 1
  1. 1.U.E.R. de MathématiquesUniversité Paris VIIParis Cedex 05France

Personalised recommendations