Advertisement

The causal structure of singularities

  • Hans-Jürgen Seifert
Chapter V. Riemannian Spaces — General Relativity
Part of the Lecture Notes in Mathematics book series (LNM, volume 570)

Abstract

Two definitions of singularities are proposed which include breakdown of continuity and of causality as well as incompleteness. Some hypotheses about the causal relation between singularities in gravitational collapse and the outside region are discussed.

Keywords

Black Hole Event Horizon Ideal Point Gravitational Collapse Curvature Singularity 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Belinski, V.A.; Khalatnikov, I.M.; Lifshitz, E.M.: Adv. in Phys. 19, 523–573 (1970)CrossRefGoogle Scholar
  2. [2]
    Budic, R.; Sachs, R.K. J. Math. Phys. 15, 1302–9 (1974)MathSciNetCrossRefGoogle Scholar
  3. [3]
    Clarke, C.J.S. GRG Journ. 6, 35–40 (1975)CrossRefGoogle Scholar
  4. [4]
    Clarke, C.J.S. Commun. Math. Phys. 41, 65–78 (1975)CrossRefGoogle Scholar
  5. [5]
    Ellis, G.F.R.; King, A.R.: Commun. Math. Phys. 38, 119–156 (1974)MathSciNetCrossRefGoogle Scholar
  6. [6]
    Geroch, R.P.: ‘Singularities in the Space-Time of General Relativity’ Ph. D. Thesis (Princeton 1967)Google Scholar
  7. [7]
    Geroch, R.P.; Kronheimer, E.H.; Penrose, R.: Proc. Roy. Soc. London A 327, 545–67 (1972)MathSciNetCrossRefGoogle Scholar
  8. [8]
    Hawking, S.W.: Commun. Math. Phys. 43, 199–220 (1975)MathSciNetCrossRefGoogle Scholar
  9. [9]
    Hawking, S.W.; Ellis, G.F.R.: ‘The Large Scale Structure of Space-Time’ Cambridge: At the University Press 1973CrossRefzbMATHGoogle Scholar
  10. [10]
    Hawking, S.W.; Sachs, R.K.: Commun. Math. Phys. 35, 287–296 (1974)MathSciNetCrossRefGoogle Scholar
  11. [11]
    Kronheimer, E.H.; Penrose, R. Proc. Camb. Phil. Soc. 63, 481–501 (1967)MathSciNetCrossRefGoogle Scholar
  12. [12]
    Kundt, W.: Zs. f. Phys. 172, 488/89 (1963)MathSciNetCrossRefGoogle Scholar
  13. [13]
    Kundt, W.: in: Recent Developments in General Relativity (Infeld-Festschrift), Pergamon Oxford, PWN Warsaw (1962)Google Scholar
  14. [14]
    Misner, C.W.; Thorne, K.S.; Wheeler, J.A.: ‘Gravitation’ Freeman San Francisco (1973)Google Scholar
  15. [15]
    Penrose, R.: ‘Gravitational Collapse’ in De Witt-Morette, C. (Ed.): Gravitational Radiation and Gravitational Collapse, Proc. I.A.U. meetings No. 64, Warsaw 1973Google Scholar
  16. [16]
    Schmidt, B.G. GRG Journ. 1, 269–80 (1971)CrossRefGoogle Scholar
  17. [17]
    Schmidt, B.G. Commun. Math. Phys. 36, 73–90 (1974)CrossRefGoogle Scholar
  18. [18]
    Seifert, H.J.: ‘Kausale Lorentzräume’ Ph. D. Thesis (Hamburg 1968)Google Scholar
  19. [19]
    Seifert, H.J.: GRG Journ. 1, 247–59 (1971)MathSciNetCrossRefGoogle Scholar
  20. [20]
    Simpson, M.; Penrose, R.: Int. Journ. Theor. Phys. 7, 183–97 (1973)CrossRefGoogle Scholar
  21. [21]
    Störmer, O.: ‘Die Struktur der Bündelmetrik der ebenen Gravitationswellen’ Ph. D. Thesis (Hamburg 1971)Google Scholar
  22. [22]
    Winicour, J.; Janis, A.I.; Newman, E.T.: Phys. Rev. 176, 1507–13 (1968)CrossRefGoogle Scholar
  23. [23]
    Yodzis, P.; Seifert, H.J.; Müller zum Hagen, H.: Commun. Math. Phys. 34, 135–148 (1973); 37, 29–40 (1974)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 1977

Authors and Affiliations

  • Hans-Jürgen Seifert
    • 1
  1. 1.Hochschule der Bundeswehr HamburgGermany

Personalised recommendations