On a symplectic structure of general relativity

  • Wiktor Szczyrba
Chapter V. Riemannian Spaces — General Relativity
Part of the Lecture Notes in Mathematics book series (LNM, volume 570)


Vector Field Einstein Equation Einstein Metrics Tensor Density Classical Field Theory 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Abraham, R. Foundations of mechanics, New York: Benjamin 1967.Google Scholar
  2. 2.
    Adler, R, Bazin, M, Sohiffer, M. Introduction to General Relativity. New York: Mc Graw Hill 1965.zbMATHGoogle Scholar
  3. 3.
    Arnowitt, R, Deser, S, Misner, C.W. The dynamics of General Relativity. In: Witten, L (ed), Gravitation-on introduction to current research, New York: John Wiley 1962.Google Scholar
  4. 4.
    Berger, M, Ebin, D, Some decompositions of the space of symmetric tensors on a Riemannian manifold, Journ. of Differential Geometry 3 (1969) 379–392.MathSciNetzbMATHGoogle Scholar
  5. 5.
    Bergmann, P.G, Komar, A.B, Status report on the quantization of the gravitational field. In: Recent Developments in General Relativity. London-Warsaw. Pergamon Press-PWN: London-Warsaw 1962.Google Scholar
  6. 6.
    Choquet-Bruhat, Y, The Cauchy problem. In: Witten, L (ed) Gravitation — an introduction to current research. New York: J.Wiley 1962.Google Scholar
  7. 7.
    Choquet-Bruhat, Y, Geroch, R, Global aspects of the Cauchy problem in G.R. Comm. Math. Phys. 14 (1969) 329–335.MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Dedecker,P, Calcul des variations, formes differentieles et champs geodesiques. In: Coll. Intern. Geometrie Differ. Strasbourg 1953.Google Scholar
  9. 9.
    De Witt, B, Quantum theory of gravity I. The canonical theory. Phys. Rev. 160 (1967) 1113–1148.Google Scholar
  10. 10.
    Dirac, P.A.M. Generalized Hamiltonian dynamics, Proc.Roy.Soc.(London) A246 (1958) 326–332; The theory of gravitation in Hamiltonian form, Proc. Roy.Soc. A246 333–346.MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Ebin, D, Marsden, J, Group of diffeomorphisms and the motion of an incompressible fluid. Ann of Mathematics 92 (1970) 102–163.MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Fadeev, L, Symplectic structure and quantization of the Einstein gravitation theory. In: Actes du Congres Intern. a. Math. Nice 1970 35–39. (vol.3)Google Scholar
  13. 13.
    Fadeev, L, Popov, V, A covariant quantization of the gravitational field, Uspechi fiz. Nauk 111 (1973) 427–450 (in Russian).CrossRefGoogle Scholar
  14. 14.
    Fischer, A, The theory of superspaces. In: Carmell, M, Fickler, S, Witten, L (ed) Relativity. New York: Plenum Press 1970.Google Scholar
  15. 15.
    Fischer, A, Marsden, J, The Einstein equations of evolution. A geometric approach, Journ. Mat.Phys. 13 (1972) 546–568.MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Fischer, A, Marsden, J, The Einstein evolution equations as a quasilinear first order symmetric hyperbolic system I. Comm. Math.Phys. 28 (1972) 1–38.MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Fischer, A, Marsden, J, Linearization stability of the Einstein equations, Bull. Am.Math.Soc. 79 (1973) 997–1003.MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Fischer, A, Marsden, J, General Relativity as a Hamiltonian system. Symposia Mathematica XIV (published by Istituto di Alta Matematica Roma) London-New York Academic press 1974, 193–205.zbMATHGoogle Scholar
  19. 19.
    Gawȩdzki, K, On the geometrization of the canonical formalism in the classical field theory, Reports on Math. Phys. 3 (1972) 307–326.MathSciNetCrossRefGoogle Scholar
  20. 20.
    Goldschmidt, H, Sternberg, S The Hamilton-Cartan formalism in the calculus of variations, Ann.Inst.Fourier 23 (1973) 203–267.MathSciNetCrossRefzbMATHGoogle Scholar
  21. 21.
    Hawking,S.W. Ellis, G,F.R, The large scale structure of space-time, Cambridge University Press 1973.Google Scholar
  22. 22.
    Kijowski, J, A finite dimensional canonical formalism in the classical field theory, Comm. Math.Phys. 30 (1973) 99–128.MathSciNetCrossRefGoogle Scholar
  23. 23.
    Kijowski,J, Szczyrba,W,A canonical structure of classical field theories (to appear in Comm. Math.Phys.).Google Scholar
  24. 24.
    Kobayashi, S, Nomozu, K, Foundations of differential geometry, New York: Interscience Publ. vol. 1 1963,vol.2 1969.Google Scholar
  25. 25.
    Kostant, B Quantization and unitary representations, in: Lecture Notes in Mathematics 170, Berlin: Springer-Verlag 1970.zbMATHGoogle Scholar
  26. 25a.
    _____, Symplectic spinors, in Symposia Mathematica vol.XIV London-New York: Academic Press 1974.Google Scholar
  27. 26.
    Kuchar, K A buble-time canonical formalism for geometrodynamics, Journ. Math. Phys. 13 (1972) 768–781.MathSciNetCrossRefGoogle Scholar
  28. 27.
    Kundt, W, Canonical quantization of gauge invariant field theories, Springer tracts in modern physics 40. Berlin-Heidelberg-New York: Springer-Verlag 1966.Google Scholar
  29. 28.
    Lichnerowicz, A Relativistic hydrodynamics and magmotohydrodynamics, New York: Ben jamin 1967.Google Scholar
  30. 29.
    Misner, Ch.W, Thorne, K.S, Wheeler, J.A, Gravitation, San fransioso: W.H.Freeman and Co 1973.Google Scholar
  31. 30.
    Narasimhan, R Analysis on real and complex manifolds, Paris:Masson ans Cie 1968.zbMATHGoogle Scholar
  32. 31.
    Souriau, J.M, Structure des systomes dynamiques, Paris:Dunod 1969.Google Scholar
  33. 32.
    Szozyrba, Lagrangian formalism in the classical field theory, Ann, Pol.Math. 32 (1975) (to appear).Google Scholar
  34. 33.
    Wheeler, J.A, Geometrodynamics and the issue of the final state. In: DeWitt B, DeWitt C (ed), Relativity, Groups and Topology, New York:Gordon and Breach 1964.Google Scholar

Copyright information

© Springer-Verlag 1977

Authors and Affiliations

  • Wiktor Szczyrba
    • 1
  1. 1.Institute of MathematicsPolish Academy of SciencesWarsawPoland

Personalised recommendations