Canonical transformations and their representations in quantum mechanics

  • M. Moshinsky
Chapter IV. Symplectic Structures — Mechanics
Part of the Lecture Notes in Mathematics book series (LNM, volume 570)


Poisson Bracket Canonical Transformation Complex Extension Dimensional Phase Space Linear Canonical Transformation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    P.A.M. Dirac, Quantum Mechanics (Clarendon Press, Oxford, Fourth Edition 1958) pp. 103–107.Google Scholar
  2. [2]
    M. Moshinsky and C. Quesne, J. Math. Phys. 12, 1772 (1971)MathSciNetCrossRefGoogle Scholar
  3. [2]a
    C. Itzykson, Commun. Math. Phys. 4, 92 (1967)MathSciNetCrossRefGoogle Scholar
  4. [2]b
    V. Bargmann ‘Group Representations on Hilbert Spaces of Analytic Functions’ in Analytic Methods of Mathematical Physics edited by Gilbert and Newton (Gordon & Breach, N.Y. 1968).Google Scholar
  5. [3]
    M. Moshinsky, SIAM, J. Appl. Math. 25, 193 (1973).MathSciNetCrossRefGoogle Scholar
  6. [4]
    J.P. Elliott, Proc. Roy. Soc. London A 245, 128 (1958).CrossRefGoogle Scholar
  7. [5]
    P. Kramer, M. Moshinsky and T.H. Seligman, ‘Complex Extensions of Canonical Transformations and Quantum Mechanics’ in Group Theory and its Applications Vol. III, edited by E.M. Loebl (Academic Press, New York 1975).Google Scholar
  8. [6]
    P.A. Mello and M. Moshinsky, J. Math. Phys. October 1975.Google Scholar
  9. [7]
    S.R. de Groot and L.G. Suttorp, Foundations of Electrodynamics (North Holland Publishing Co., Amsterdam 1972) Chapter VI.Google Scholar
  10. [8]
    P. Kramer and M. Moshinsky (Paper in preparation).Google Scholar
  11. [9]
    H. Goldstein, Classical Mechanics (Addison-Wesley Publishing Co., Reading, Mass., 1959), p. 243.Google Scholar
  12. [10]
    I.S. Gradshteyn and I.W. Ryzhik, Tables of Integrals Series and Products, (Academic Press, New York and London 1965) p. 1039.Google Scholar

Copyright information

© Springer-Verlag 1977

Authors and Affiliations

  • M. Moshinsky
    • 1
  1. 1.Instituto de FísicaUniversidad de México (UNAM)México, D.F.

Personalised recommendations