Advertisement

On the generalization of symplectic geometry to multiple integrals in the Calculus of Variations

  • Paul Dedecker
Chapter IV. Symplectic Structures — Mechanics
Part of the Lecture Notes in Mathematics book series (LNM, volume 570)

Keywords

Phase Space Differential Form Spectral Sequence Symplectic Structure Integral Manifold 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Bibliography

  1. [1]
    Ph. Antoine, Etude de la structure de certains espaces fonctionnels; applications. Thèse, Université de Paris-Sud (Orsay), 1972.Google Scholar
  2. [2]
    G.A. Bliss, Lectures on the Calculus of Variations, Chicago University Press, 1946.Google Scholar
  3. [3]
    E. Cartan, Leçons sur les invariants intégraux. Paris, Hermann, 1921.zbMATHGoogle Scholar
  4. [4]
    —, Les systèmes différentiels extérieurs et leurs applications géométriques. Paris, Hermann, A.S.I. 1945.zbMATHGoogle Scholar
  5. [5]
    H. Cartan, Les systèmes d'équations extérieures. Notes minéographiées, Séminaire Julia, Fac. des Sciences de Paris, 1937.Google Scholar
  6. [6]
    C. Caratheodory, Uber die Variationsrechnung bei mehrfachen Integralen. Acta Szeged, 4 (1929), 193–216.zbMATHGoogle Scholar
  7. [7]
    R. Courant and D. Hilbert, Methods of Mathematical Physics, I, II. Interscience Publ., New York 1953, 1962.zbMATHGoogle Scholar
  8. [8]
    P. Dedecker, Sur les intégrales multiples du Calcul des Variations. Comptes rendus du IIIe congrès Nat. des Sci., Bruxelles, 1950.Google Scholar
  9. [9]
    —, Les systémes d'équations extérieures. Equations différentielles extérieures et Calcul des Variations. Séminaire de Topologie de Strasbourg, 1951 (deux articles).Google Scholar
  10. [10]
    —, Calcul des variations, formes différentielles et champs géodésiques. Colloques internat. du C.N.R.S., Strasbourg, 1953.zbMATHGoogle Scholar
  11. [11]
    —, Systèmes différentiels extérieurs, invariants intégraux et suites spectrales. Convegno internazionale di Geometria Differenziale, Venezia, Padova, Bologna e Pisa, 1953.Google Scholar
  12. [12]
    —, Calcul des Variations et topologie algébrique. Mém. Soc. Roy. Sci. Liège, XIX (1957), 1–216.MathSciNetzbMATHGoogle Scholar
  13. [13]
    —, à paraître, Accademia Nazionale dei Lincei, Roma, Contributi del Centro Interdisciplinare di Science Matematiche e. 1. Applicazioni.Google Scholar
  14. [14]
    Th. de Donder, Théorie invariantive du Calcul des Variations. Paris, Gauthier-Villars, 1935.zbMATHGoogle Scholar
  15. [15]
    P. Funk, Variationsrechnung und ihre Anwendung in Physik und Technik. Springer Verl., Grundlehren Math. Wiss. Bd. 94, 1962.Google Scholar
  16. [16]
    P.L. García, Geometría simpléctica en la teoría clásica de campos. Coll. Math. 19 (1968).Google Scholar
  17. [17]
    —, The Poincaré-Cartan invariant in the Calculus of Variations. Symposia Mathematica, vol. 14, Istituto Nazionale di Alta Matematica, Roma, 1974.zbMATHGoogle Scholar
  18. [18]
    P.L. García and A. Pérez-Rendón, Symplectic approach to the theory of quantized fields. I, Comm. Math. Phys. 13 (1969), 22–44; II, Archiv for Rat. Mechanics and Analysis 43 (1971), 101–124.MathSciNetCrossRefzbMATHGoogle Scholar
  19. [19]
    H. Goldschmidt and S. Sternberg, The Hamilton-Cartan formalism in the Calculus of Variations. Ann. Inst. Fourier, 23 (1973), 203–267.MathSciNetCrossRefzbMATHGoogle Scholar
  20. [20]
    J. Hadamard, Leçons sur la propagation des ondes et des équations de l'hydrodynamique. Paris, Hermann, 1903.zbMATHGoogle Scholar
  21. [21]
    R. Hermann, E. Cartan's Geometric theory of partial differential equations. Advances in Math. 1 (1965), 265–317.MathSciNetCrossRefzbMATHGoogle Scholar
  22. [22]
    —, A differential geometric formalism for multiple integrals in C.V. A.M.S. Summer Institute in Global Analysis, Berkeley, Ca., July 1–26, 1968. See chapt. V in: Lie Algebras and Quantum Mechanics, Benjamin Lect. Notes.Google Scholar
  23. [23]
    J. Kijowski, A finite-dimensional canonical formalism in the classical field theory. Commun. Math. Phys., 30 (1973), 99–128.MathSciNetCrossRefGoogle Scholar
  24. [24]
    J. Kijowski and W. Szcyrba, A canonical structure for classical field theories. Commun. Math. Phys. 46 (1976), 183–206.MathSciNetCrossRefzbMATHGoogle Scholar
  25. [25]
    R. Klötzler, Mehrdimensionale Variationsrechnung. Birkhäuser Verl., Basel und Stuttgart, 1970.CrossRefzbMATHGoogle Scholar
  26. [26]
    C. Lanczos, The Variational principles of Mechanics. University of Toronto Press, 1949.Google Scholar
  27. [27]
    Th. Lepage, Champs stationnaires, champs géodésiques et formes intégrables, I, II. Bull. Acad. Roy. Belg., Classe des Sciences, 28 (1942), 73–92, 247–268.MathSciNetzbMATHGoogle Scholar
  28. [28]
    J. Leray, L'anneau spectral et l'anneau filtré d'homologie d'un espace localement compact et d'une application continue. J. Math. Pures et App. (9) 29 (1950), 1–139.MathSciNetzbMATHGoogle Scholar
  29. [29]
    A. Liesen, Feldtheorie in der Variationsrechnung mehrfacher Integralen, I, II. Math. Ann. 171 (1967), 194–218, 273–292.MathSciNetCrossRefzbMATHGoogle Scholar
  30. [30]
    C.B. Morrey, Multiple integrals in the Calculus of Variations. Springer Verl., Grundlehren Math. Wiss. Bd. 130, 1966.Google Scholar
  31. [31]
    M. Morse, The Calculus of Variations in the large. Amer. Math. Soc. Colloquium Pub. vol. 14, 1934.Google Scholar
  32. [32]
    R. Palais and S. Smale, A generalized Morse theory. Bull. Amer. Math. Soc., 70 (1964), 165–172.MathSciNetCrossRefzbMATHGoogle Scholar
  33. [33]
    H. Poincaré, Leçons sur les méthodes nouvelles de la Mécanique céleste. Paris, Gauthier Villars, 1892–1899.zbMATHGoogle Scholar
  34. [34]
    J.P. Serre, Homologie singulière des espaces fibrés; applications. Ann. of Math. 54 (1951), 425–505.MathSciNetCrossRefzbMATHGoogle Scholar
  35. [35]
    E. Vessiot, Sur la théorie des multiplicités et le Calcul des Variations. Bull. Soc. Math. de France, 40 (1912), 68–139.MathSciNetzbMATHGoogle Scholar
  36. [36]
    H. Weyl, Geodesic fields. Ann. of Math., 36 (1935), 607–629.MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer-Verlag 1977

Authors and Affiliations

  • Paul Dedecker
    • 1
  1. 1.Université Catholique de LouvainFrance

Personalised recommendations