Advertisement

Gauge fields as quantized connection forms

  • Meinhard E. Mayer
Chapter III. Connections — Gauge Theories
Part of the Lecture Notes in Mathematics book series (LNM, volume 570)

Keywords

Gauge Theory Gauge Group Vector Bundle Gauge Field Curvature Form 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Bibliography

  1. [1]
    E. Abers and B. W. Lee, Gauge Theories, Physics Reports 9, No 1, 1–141 (1973).CrossRefGoogle Scholar
  2. [2]
    R. L. Arnowitt and S. I. Fickler, Phys. Rev. 127, 1821 (1962).MathSciNetCrossRefGoogle Scholar
  3. [3]
    J. Bernstein, Spontaneous Symmetry Breaking, Gauge Theories, Higgs Mechanism and All That, Rev. Mod. Phys. 46, 1 (1974)MathSciNetCrossRefGoogle Scholar
  4. [4]
    J. Bisognano and E. Wichmann, J. Math. Phys. 16, 985 (1975).MathSciNetCrossRefGoogle Scholar
  5. [5]
    K. Bleuler, Helv. Phys. Acta 23, 567 (1950).MathSciNetGoogle Scholar
  6. [6]
    S. Bludman, Nuovo Cimento 9, 433 (1958)MathSciNetCrossRefGoogle Scholar
  7. [7]
    N.N. Bogolyubov and D. V. Shirkov, Vvedenie v teoriyu kvantovannykh poleǐ (Introduction to the Theory of Quantized Fields), Moscow, 1957 [Engl. Transl., Interscience, N.Y., 1959]; 2nd Russian Ed. Moscow, 1973.Google Scholar
  8. [8]
    R. Brout and F. Englert, Phys. Rev. Lett. 13, 321 (1964).MathSciNetCrossRefGoogle Scholar
  9. [9]
    N. Bourbaki, Variétés différentielles et analytiques, Fascicule de résultats. Hermann, Paris § 1–7, 1967; § 8–15, 1971.zbMATHGoogle Scholar
  10. [10]
    S. S. Chern, Geometry of Characteristic Classes, Proc. 13-th Biennial Seminar, Canadian Math. Congr., 1972 pp. 1–40.Google Scholar
  11. [11]
    B. S. de Witt, Phys. Rev. 162, 1195, 1239 (1967).Google Scholar
  12. [12]
    J. Dieudonné, Treatise on Analysis, vol. III, 1972; vol. IV, 1974; Academic Press, N. Y. [French original: Éléments d'analyse, Gauthier Villars, Paris, 1970, 1971]zbMATHGoogle Scholar
  13. [13]
    S. Doplicher, R. Haag and J. E. Roberts, Fields, Observables and Gauge Transformations, I; II, Commun. Math. Phys. 13, 1–23 (1969); 15, 173–200 (1971). Local Observables and Particle Statistics, I, Ibid. 23, 199–230 (1971); S. Doplicher and J. E. Roberts, Fields, Statistics and Nonabelian Gauge Groups, Ibid. 28, 331–348 (1972).MathSciNetCrossRefzbMATHGoogle Scholar
  14. [14]
    L. D. Faddeev and V. N. Popov, Feynman Diagrams for the Yang-Mills Field, Phys. Lett. 25B, 29 (1967); Kiev Preprint, 1967; L. D. Faddeev, Teor. Mat. Fiz. 1, 3 (1969) [Theoret. Mathem. Phys. 1, 1 (1969)].CrossRefGoogle Scholar
  15. [15]
    E. Fermi, Rev. Mod. Phys. 4, 87 (1932).CrossRefGoogle Scholar
  16. [16]
    R. P. Feynman, Acta Physica Polonica 26, 697 (1963).MathSciNetGoogle Scholar
  17. [17]
    P. L. Garcia, Gauge Algebras, Curvature and Symplectic Structure, to appear in J. Differ. Geom.; Reducibility of the Symplectic Structure of Classical Fields with Gauge Symmetry, this volume, p.Google Scholar
  18. [18]
    L. Gårding and A. S. Wightman, Fields as Operator-Valued Distributions in Relativistic Quantum Field Theory, Arkiv för Fysik 28, 129–184 (1964).Google Scholar
  19. [19]
    M. Gell-Mann and S. L. Glashow, Ann. Phys. (N. Y.) 15, 437 (1961).MathSciNetCrossRefGoogle Scholar
  20. [20]
    S. N. Gupta, Proc. Phys. Soc. (Lond.) 61A, 68 (1950).Google Scholar
  21. [21]
    G. S. Guralnik, C. R. Hagen and T. W. B. Kibble, Phys. Rev. Lett. 13, 585 (1964).CrossRefGoogle Scholar
  22. [22]
    P. W. Higgs, Phys. Rev. Lett. 12, 132 (1964); Phys. Rev. 145, 1156 (1966).MathSciNetCrossRefGoogle Scholar
  23. [23]
    H. Kerbrat-Lunc, Ann. Inst. Poincaré 13A, 295 (1970).MathSciNetGoogle Scholar
  24. [24]
    R. Kerner, Ann. Inst. Poincaré 9A, 143 (1968).MathSciNetGoogle Scholar
  25. [25]
    T. W. B. Kibble, J. Math. Phys. 2, 212 (1961).MathSciNetCrossRefGoogle Scholar
  26. [26]
    T. W. B. Kibble, Phys. Rev. 155, 1554 (1967).CrossRefGoogle Scholar
  27. [27]
    S. Kobayasi and K. Nomizu, Foundations of Differential Geometry, Vols. 1 and 2, Wiley(Interscience), N. Y., 1963 and 1969.Google Scholar
  28. [28]
    A. Lichnerowicz, Théorie globale des connexions et des groupes d'holonomie, Ed. Cremonese, Roma 1955.zbMATHGoogle Scholar
  29. [29]
    H. G. Loos, Internal Holonomy Groups of Yang-Mills Fields, J. Math. Phys. 8, 2114–2124 (1967); Phys. Rev. 188, 2342 (1969).CrossRefzbMATHGoogle Scholar
  30. [30]
    M. E. Mayer, Thesis, Unpubl. University of Bucharest, 1956; Preprint, JINR, Dubna, 1958 and Nuovo Cimento 11, 760–770 (1959); also Cîmpuri cuantice si particule elementare (Quantized Fields and Elementary Particles), Ed. Tehnica, Bucharest, 1959.Google Scholar
  31. [31]
    M. E. Mayer, Fibrations, Connections and Gauge Theories (An After-thought to the Talk of A. Trautman), Proc. of the International Symposium on New Mathematical Methods in Physics, K. Bleuler and A. Reetz, Eds., Bonn 1973; Talk at Intern. Congress of Mathematicians (Abstract N4) Vancouver, B. C., August 1974; Gauge Fields as Quantized Connection Forms, to be published.Google Scholar
  32. [32]
    E. Noether, Invariante Variationsprobleme, Nachr. Ges. Göttingen (math.-phys. Klasse) 1918, 235–257.Google Scholar
  33. [33]
    V. I. Ogievetskii and I. V. Polubarinov, Zh. Eksp. Teor. Fiz. 41, 247 (1961) [Sov. Phys. JETP 14, 179 (1962)].MathSciNetGoogle Scholar
  34. [34]
    W. Pauli, Die allgemeinen Prinzipien der Quantenmechanik, Handb. d. Physik, Bd. XXIV, 1. T., 1933 (2nd Ed. Bd. V, 1. T. 1958) Springer-Verlag.Google Scholar
  35. [35]
    A. Salam and J. C. Ward, Nuovo Cimento 11, 568 (1959).MathSciNetCrossRefGoogle Scholar
  36. [36]
    A. Salam, Nobel Symposium 1968, Almquist & Viksell, Stockholm.Google Scholar
  37. [37]
    J. Schwinger, Phys. Rev. 82, 914 (1951); 125, 1043; 127, 324 (1962); 91, 714 (1953).MathSciNetCrossRefGoogle Scholar
  38. [38]
    I. E. Segal, Proc. Nat. Acad. Sci. USA 41, 1103 (1955); 42, 670 (1956); Quantization of Nonlinear Systems, J. Math. Phys. 1, 468–488 (1960); Quantized Differential Forms, Topology 7, 147–171 (1968).CrossRefGoogle Scholar
  39. [39]
    S. Sternberg, Lectures on Differential Geometry, Prentice-Hall, Englewood Cliffs, N. J., 1963.zbMATHGoogle Scholar
  40. [40]
    F. Strocchi and A. S. Wightman, Proof of the Charge Superselection Rule in Local Relativistic Quantum Field Theory, J. Math. Phys. 15, 2198–2224 (1974).MathSciNetCrossRefGoogle Scholar
  41. [41]
    R. Sulanke and P. Wintgen, Differentialgeometrie und Fasebündel, Birkhäuser Verlag, Basel 1972.CrossRefzbMATHGoogle Scholar
  42. [42]
    W. E. Thirring, Ann. Phys. (N. Y.) 16, 96 (1961).MathSciNetCrossRefGoogle Scholar
  43. [43]
    G. 't Hooft, Nucl. Phys. B33, 173; B35, 167 (1971).Google Scholar
  44. [44]
    G. 't Hooft and M. Veltman, Nucl. Phys. B44, 189 (1973).MathSciNetGoogle Scholar
  45. [45]
    A. Trautman, Infinitesimal Connections in Physics, Proc. Internat. Symposium on New Mathematical Methods in Physics, K. Bleuler and A. Reetz, Eds. Bonn, 1973 and earlier work quoted there.Google Scholar
  46. [46]
    R. Utiyama, Invariant Theoretical Interpretation of Interaction, Phys. Rev. 101, 1597 (1957).MathSciNetCrossRefzbMATHGoogle Scholar
  47. [47]
    M. Veltman, Nucl. Phys. B21, 288 (1971).Google Scholar
  48. [48]
    S. Weinberg, Phys. Rev. Lett. 19, 1264 (1967).CrossRefGoogle Scholar
  49. [49]
    S. Weinberg, Rev. Mod. Phys. 46, 255 (1974) [cf. also Scientific American, 231, 50 (1974)].MathSciNetCrossRefGoogle Scholar
  50. [50]
    H. Weyl, Gravitation und Elektrizität, Stzber. Preuss. Akad. Wiss. 1918, 465–480; Z. Physik 56, 330 (1929).Google Scholar
  51. [51]
    C. N. Yang and R. L. Mills, Conservation of Isotopic Spin and Isotopic Gauge Invariance, Phys. Rev. 96, 191 (1954).MathSciNetCrossRefzbMATHGoogle Scholar
  52. [52]
    C. N. Yang, Integral Formalism for Gauge Fields, Phys. Rev. Lett. 33, 445–447 (1974); T. T. Wu and C. N. Yang, Concept of Nonintegrable Phase Factors and Global Formulation of Gauge Fields, Preprint ITP-SB 75/31, Stony Brook, 1975 (Phys. Rev., to be published).MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer-Verlag 1977

Authors and Affiliations

  • Meinhard E. Mayer
    • 1
  1. 1.Departments of Mathematics and PhysicsUniversity of CaliforniaIrvine

Personalised recommendations