Graded manifolds, graded Lie theory, and prequantization

  • Bertram Kostant
Chapter II. Graded Lie Algebras — Supersymmetry
Part of the Lecture Notes in Mathematics book series (LNM, volume 570)


Line Bundle Hopf Algebra Symplectic Manifold Commutative Algebra Clifford Algebra 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    C. Chevalley, The Algebraic Theory of Spinors, Columbia Univ. Press, New York, 1954.zbMATHGoogle Scholar
  2. 2.
    L. Corwin, Y. Neeman and S. Sternberg, Graded Lie algebras in mathematics and physics, Review of Modern Physics 47 (1975), 573–603.MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    R. Godement, Théorie des Faisceaux, Hermann, Paris, 1958.zbMATHGoogle Scholar
  4. 4.
    R. Heyneman and M. Sweedler, Affine Hopf algebras I, Journal of Algebra 13 (1969), 192–241.MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    V. G. Kac, Lie superalgebras, Uspehi Matem. Nauk. (to appear).Google Scholar
  6. 6.
    I. Kaplansky, Graded Lie algebras I, II, University of Chicago, Preprints, 1975.Google Scholar
  7. 7.
    A. Kirillov, Unitary representations of nilpotent Lie groups, Uspehi. Matem. Nauk, 17 (1962), 57–110.MathSciNetzbMATHGoogle Scholar
  8. 8.
    B. Kostant, Quantization and unitary representations, Lectures in Modern Analysis and Applications III, Springer-Verlag, vol. 170 (1970), 87–207.MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    B. Kostant, On the definition of quantization, Géométrie Symplectique et Physique Mathématique, Colloques Internationaux, CNRS 237 (1975), 187–210.MathSciNetGoogle Scholar
  10. 10.
    J. Milnor and J. Moore, On the structure of Hopf algebras, Ann. of Math. 81 (1965), 211–264.MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    A. Nijenhuis and R. W. Richardson, Cohomology and deformations in graded Lie algebras, Bull. Amer. Math. Soc. 72, 1–29 (1966).MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    D. Quillen, Rational homotopy theory, Ann. of Math. 90 (1969), 205–295.MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    D. Simms and N. Woodhouse, Lectures on Geometric Quantization, Lecture Notes in Physics, Springer-Verlag, vol. 53 (1976).Google Scholar
  14. 14.
    J. Souriau, Structures des systèmes dynamiques, Dunod, Paris (1970).zbMATHGoogle Scholar
  15. 15.
    M. Sweedler, Hopf algebras, Benjamin, New York, 1969.zbMATHGoogle Scholar
  16. 16.
    G. Warner, Harmonic Analysis on Semi-Simple Lie Groups I, Springer Verlag, New York, 1972.CrossRefzbMATHGoogle Scholar

Copyright information

© Springer-Verlag 1977

Authors and Affiliations

  • Bertram Kostant

There are no affiliations available

Personalised recommendations