Advertisement

Geometric structure of quantization

  • Jerzy Kijowski
Chapter I. Geometric Quantization
Part of the Lecture Notes in Mathematics book series (LNM, volume 570)

Keywords

Wave Function Quantum State Configuration Space Lagrangian Submanifolds Affine Space 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    R.J.Blattner, Quantization and Representation Theory, Proceedings of Symposia in Pure Mathematics, vol. XXVI, American Math. Soc. 1973Google Scholar
  2. [2]
    K.Gawȩdzki, Fourier like Kernels in Geometric Quantiztion, to appear in Dissertationes MathematicaeGoogle Scholar
  3. [3]
    L. Hörmander, Fourier Integral Operators I, Acta Math. 127 (1971), p. 179MathSciNetCrossRefzbMATHGoogle Scholar
  4. [4]
    J. Kijowski, A Finite Dimensional Canonical Formalism in the Classical Field Theory, Comm. Math. Phys, 30 (1973) p. 99MathSciNetCrossRefGoogle Scholar
  5. [5]
    J.Kijowski and W.Szczyrba, A canonical Structure of the Classical Field Theory, to appear in Comm. Math. Phys.Google Scholar
  6. [6]
    J.Kijowski, W.Tulczyjew, Canonical Formalism and Boundary Problems, in preparationGoogle Scholar
  7. [7]
    B. Kostant, Quantization and Unitary Representations, Lecture Notes in Math, vol 170, Springer, Berlin 1970zbMATHGoogle Scholar
  8. [8]
    B.Kostant, Symplectic Spinors, Proceedings of Convegno di Geometria Simplettica e Fisica Matematica, INDAM Rome 1973Google Scholar
  9. [9]
    В. П. Масоь, Меоре ьозмuзенuŭ u оссuuммомuнескме Мемоgы, Москьа 1965Google Scholar
  10. [10]
    D.J.Simms, Geometric Quantization, Proceedings of Colloque Symplectique, Aixen-Provence 1974Google Scholar
  11. [11]
    J.M. Souriau, Structure des Systèmes Dynamiques, Dunod, Paris 1970zbMATHGoogle Scholar

Copyright information

© Springer-Verlag 1977

Authors and Affiliations

  • Jerzy Kijowski
    • 1
  1. 1.Institute of Mathematical Methods in PhysicsUniversity of WarsawWarszawaPoland

Personalised recommendations