V. Fock, 40 years later

  • Ennico Onolri
Chapter I. Geometric Quantization
Part of the Lecture Notes in Mathematics book series (LNM, volume 570)


Unitary Irreducible Representation Kepler Problem Singular Orbit Kepler Motion Eccentric Anomaly 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1).
    V. Fock, Z.Physik 98, 145 (1935).CrossRefGoogle Scholar
  2. 2).
    E.Onofri, ‘SO(n, 2) singular orbits and their quantisation’, Proceedings of the Conference on Symplectic Manifolds and Mathematical Physics, Aix-en-Provence 1974, C.N.R.S. (to appear).Google Scholar
  3. 3).
    E.Onofri, ‘Dynamical Quantisation of the Kepler Manifold’, Università di Parma, preprint IFPR-T-047 (1975).Google Scholar
  4. 4).
    J. Moser, Commun.Pure Appl.Math., XXIII, 609 (1970).CrossRefGoogle Scholar
  5. 5).
    E.Onofri, ‘Quantization Theory for homogeneous Kaehler manifolds’, Università di Parma, IFPR-T-038 (1974).Google Scholar
  6. 6).
    E. Onofri and M. Pauri, J.Math.Phys., 13 (4), 533 (1972).MathSciNetCrossRefGoogle Scholar
  7. 7).
    R.Blattner, B.Kostant, D.Simms and J.M.Souriau, Lectures given in this Conference.Google Scholar
  8. 8).
    A.L.Carey, ‘Induced Representations, reproducing kernels and the conformal group’, Mathematical Institute, Oxford preprint (1974).Google Scholar
  9. 9).
    M. Bander and C. Itzykson, Rev.Mod.Phys., 38(2) 330 (1966).MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 1977

Authors and Affiliations

  • Ennico Onolri
    • 1
    • 2
  1. 1.Istituto di Fisica, Sezione TeoricaUniversità di ParmaParmaItaly
  2. 2.Istituto Nazionale di Fisica NucleareSezione di MilanoItaly

Personalised recommendations