On cohomology groups appearing in geometric quantization

  • Jedrzej Śniatycki
Chapter I. Geometric Quantization
Part of the Lecture Notes in Mathematics book series (LNM, volume 570)


Cohomology Group Homogeneous Polynomial Symplectic Manifold Integral Manifold Geometric Quantization 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    R. J. Blattner, Quantization and representation theory, Proc. Sympos. Pure Math., vol. 26, Amer. Math. Soc., Providence, R.I., 1973, pp. 147–165.MathSciNetCrossRefzbMATHGoogle Scholar
  2. [2]
    M. Golubitsky and V. Guillemin, Stable mappings and their singularities, Graduate Texts in Math., 14, Springer-Verlag, New York, 1973.zbMATHGoogle Scholar
  3. [3]
    B. Kostant, Quantization and unitary representations, Lecture Notes in Math., vol. 170, Springer-Verlag, Berlin, 1970, pp. 87–208.zbMATHGoogle Scholar
  4. [4]
    B. Kostant, Symplectic spinors, Conv. di Geom. Simp. e Fis. Mat., INDAM, Rome, 1973, to appear in Symp. Math. Series, Academic Press.Google Scholar
  5. [5]
    B. Kostant, On the definition of quantization, to appear in proceedings of Coll. Int. du C.N.R.S. Géométrie symplectique et physique mathématique, Aix-en-Provence, 1974.Google Scholar
  6. [6]
    D. J. Simms, Geometric quantisation of the harmonic oscillator with diagonalised Hamiltonian, Proc. 2nd Int. Coll. on Group Theor. Methods in Physics, Nijmegen, 1973.Google Scholar
  7. [7]
    D. J. Simms, Metalinear structures and a geometric quantisation of the harmonic oscillator, to appear in proceedings of Coll. Int. du C.N.R.S. Géométrie symplectique et physique mathématique, Aix-en-Provence, 1974.Google Scholar
  8. [8]
    J. Śniatycki, Bohr-Sommerfeld conditions in geometric quantization, Reports in Math. Phys., vol. 7, (1974), pp. 127–135.Google Scholar
  9. [9]
    J. Śniatycki, Wave functions relative to a real polarization, to appear in Int. J. of Theor. Phys.Google Scholar
  10. [10]
    I. S. Sokolnikoff, Tensor analysis theory and applications to geometry and mechanics of continua, 2nd ed., John Wiley, New York, 1964.zbMATHGoogle Scholar
  11. [11]
    F. W. Warner, Foundations of differentiable manifolds and Lie groups, Scott, Foresman and Co., Glenview, Illinois, 1971.zbMATHGoogle Scholar
  12. [12]
    A. Weinstein, Symplectic manifolds and their Lagrangian submanifolds, Advances in Math., vol. 6, 1971, pp. 329–346.MathSciNetCrossRefzbMATHGoogle Scholar
  13. [13]
    R. O. Wells, Jr., Differential analysis on complex manifolds, Prentice Hall, Englewood Cliffs, N.J., 1973.zbMATHGoogle Scholar

Copyright information

© Springer-Verlag 1977

Authors and Affiliations

  • Jedrzej Śniatycki
    • 1
  1. 1.University of CalgaryCanada

Personalised recommendations