The metalinear geometry of non-real polarizations

  • Robert J. Blattner
Chapter I. Geometric Quantization
Part of the Lecture Notes in Mathematics book series (LNM, volume 570)


Vector Bundle Positive Polarization Maximal Compact Subgroup Nilpotent Orbit Left Action 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    L. Auslander and B. Kostant, Polarization and unitary representations of solvable Lie groups, Invent. Math. 14 (1971), 255–354.MathSciNetCrossRefzbMATHGoogle Scholar
  2. [2]
    R. Blattner, On induced representations II: infinitesimal induction, Amer. J. Math. 83 (1961), 499–512.MathSciNetCrossRefzbMATHGoogle Scholar
  3. [3]
    _____, Quantization and representation theory, Proc. Sympos. Pure Math., vol. 26, Amer. Math. Soc., Providence, R.I., 1974, pp. 145–165.Google Scholar
  4. [4]
    _____, Pairing of half-form spaces, proceedings of the ‘Colloque Symplectique’, Aix-en-Provence 1974, to appear.Google Scholar
  5. [5]
    _____, Intertwining operators and the half-density pairing, Lecture Notes in Math., vol. 466, Springer-Verlag, Berlin, 1975, pp. 1–12.zbMATHGoogle Scholar
  6. [6]
    J. Dixmier, Représentations induites holomorphes des groupes résolubles algébriques, Bull. Soc. Math. France 94 (1966), 181–206.MathSciNetzbMATHGoogle Scholar
  7. [7]
    I. M. Gel'fand and M. I. Graev, Unitary representations of the real unimodular group (principal non-degenerate series), Izv. Akad. Nauk SSSR. Ser. Mat. 17 (1953), 189–248 (in Russian). Amer. Math. Soc. Translations, Ser. 2, vol. 2, 147–205.MathSciNetGoogle Scholar
  8. [8]
    B. Kostant, Quantization and unitary representations, Lecture Notes in Math., vol. 170, Springer-Verlag, Berlin, 1970, pp. 237–253.zbMATHGoogle Scholar
  9. [9]
    _____, Symplectic spinors, Symposia Math., vol. XIV, Academic Press, London, 1974, pp. 139–152.zbMATHGoogle Scholar
  10. [10]
    L. Rothschild and J. Wolf, Representations of semisimple groups associated to nilpotent orbits, Ann. Sci. Ecole Norm. Sup. (4) 1 (1974), 155–174.MathSciNetzbMATHGoogle Scholar
  11. [11]
    I. Satake, Factors of automorphy and Fock representations, Advances in Math. 7 (1971), 83–110.MathSciNetCrossRefzbMATHGoogle Scholar
  12. [12]
    E. Spanier, Algebraic topology, McGraw-Hill, New York, 1966.zbMATHGoogle Scholar

Copyright information

© Springer-Verlag 1977

Authors and Affiliations

  • Robert J. Blattner
    • 1
  1. 1.Department of MathematicsUniversity of CaliforniaLos AngelesUSA

Personalised recommendations