Advertisement

Une propriete des fonctions harmoniques positives d'apres dahlberg

  • Monsieur Peter Sjogren
Conference paper
Part of the Lecture Notes in Mathematics book series (LNM, volume 563)

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Bibliographie

  1. [1]
    BEURLING, A. A minimum principle for positive harmonic functions. Ann. Acad. Sci. Fenn. Ser A,I,Mathematica 372 (1965), 3–7.MathSciNetzbMATHGoogle Scholar
  2. [2]
    DAHLBERG, B. A minimum principle for positive harmonic functions. Report 1973-29, Chalmers University of Technology and the University of Göteborg, Department of Mathematics, Göteborg.Google Scholar
  3. [3]
    SJÖGREN, P. La convolution dans Ll faible de Rn. Séminaire Choquet: Initiation à l'Analyse, 13éme année, 1973/74, no14, 10 p.Google Scholar
  4. [4]
    SJÖGREN, P. Noyaux singuliers positifs et ensembles exceptionnels. Séminaire Choquet: Initiation à l'Analyse, 14éme année, 1974/75, no8, 23 p.Google Scholar
  5. [5]
    STEIN, E.M. Singular Integrals and Differentiability Properties of Functions. Princeton University Press, 1970 (Princeton Mathematical Series, 30).Google Scholar
  6. [6]
    WIDMAN, K.-O. Inequalities for the Green function and boundary continuity of the gradient of solutions of elliptic differential equations. Math. Scand. 21 (1967), 17–37.MathSciNetzbMATHGoogle Scholar
  7. [7]
    WIDMAN, K.-O. Inequalities for Green functions of second order elliptic operators. Report 8-1972, Linköping University, Department of Mathematics, Linköping.Google Scholar

Copyright information

© Springer-Verlag 1976

Authors and Affiliations

  • Monsieur Peter Sjogren
    • 1
  1. 1.Equipe d'Analyse - E.R.A. au C.N.R.S. no 294Universite P. et M.Curie (Université Paris VI)Paris - Cedex 05

Personalised recommendations