Advertisement

Numerical experiments with a multiple grid and a preconditioned Lanczos type method

  • P. Wesseling
  • P. Sonneveld
Conference paper
Part of the Lecture Notes in Mathematics book series (LNM, volume 771)

Keywords

Computational Complexity Outer Iteration Multiple Grid Iteration Work Spectral Condition Number 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    O. Axelsson: Solution of linear systems of equations: iterative methods. In: V.A. Barker (ed.): Sparse matrix techniques. Lecture Notes in Mathematics 572, 1977, Berlin etc., Springer-Verlag.Google Scholar
  2. 2.
    O. Axelsson, I. Gustafsson: A modified upwind scheme for convective transport equations and the use of a conjugate gradient method for the solution of non-symmetric systems of equations. J. Inst. Math. Appl. 23, 321–338, 1979.CrossRefzbMATHGoogle Scholar
  3. 3.
    N.S. Bakhvalov: On the convergence of a relaxation method with natural constraints on the elliptic operator. USSR Comp. Math. Math. Phys. 6 no. 5, 101–135, 1966.MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    K.E. Barrett: The numerical solution of singular-perturbation boundary-value problems. J. Mech. Appl. Math. 27, 57–68, 1974.MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    A. Brandt: Multi-level adaptive technique (MLAT) for fast numerical solution to boundary-value problems. Proc. 3rd Internat. Conf. on Numerical Methods in Fluid Mechanics, Paris, 1972. Lecture Notes in Physics 180, 82–89, Springer-Verlag 1973.Google Scholar
  6. 6.
    A. Brandt: Multi-level adaptive solutions to boundary value problems. Math. Comp. 31, 333–390, 1977.MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    J.C. Chien: A general finite difference formulation with application to the Navier-Stokes equations. Comp. Fl. 5, 15–31, 1977.CrossRefzbMATHGoogle Scholar
  8. 8.
    R.P. Fedorenko: A relaxation method for solving elliptic difference equations. USSR Comp. Math. Math. Phys. 1, 1092–1096, 1962.CrossRefzbMATHGoogle Scholar
  9. 9.
    R.P. Fedorenko: The speed of convergence of one iterative process USSR Comp. Math. Math. Phys. 4, no. 3, 227–235, 1964.CrossRefzbMATHGoogle Scholar
  10. 10.
    P.O. Frederickson: Fast approximate inversion of large sparse linear systems. Mathematics Report 7-75, 1975, Lakehead University.Google Scholar
  11. 11.
    I. Gustafsson: A class of first order factorization methods. BIT 18, 142–156, 1978.MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    W. Hackbusch: On the multi-grid method applied to difference equations. Computing 20, 291–306, 1978.MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    W. Hackbusch: On the fast solutions of nonlinear elliptic equations. Num. Math. 32, 83–95, 1979.MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    R.W. Hockney: A fast direct solution of Poisson's equation using Fourier analysis. J. Ass. Comput. Mach. 12, 95–113, 1965.MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    R.W. Hockney: The potential calculation and some applications. Methods in Comp. Phys. 9, 135, 1970.Google Scholar
  16. 16.
    A.M. Il'in: Differencing scheme for a differential equation with a small parameter affecting the highest derivative. Math. Notes Acad. Sc. USSR 6, 596–602, 1969.CrossRefzbMATHGoogle Scholar
  17. 17.
    D.S. Kershaw: The incomplete Cholesky-conjugate gradient method for the iterative solution of systems of linear equations. J. Comp. Phys. 26, 43–65, 1978.MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    J.A. Meijerink and H.A. van der Vorst: An iterative solution method for linear systems of which the coefficient matrix is a symmetric M-matrix. Math. Comp. 31, 148–162, 1977.MathSciNetzbMATHGoogle Scholar
  19. 19.
    R.A. Nicolaides: On multiple grid and related techniques for solving discrete elliptic systems. J. Comp. Phys. 19, 418–431, 1975.MathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    D.W. Peaceman and H.H. Rachford Jr.: The numerical solution of parabolic and elliptic differential equations. JSIAM 3, 28–41, 1955.MathSciNetzbMATHGoogle Scholar
  21. 21.
    P.J. Roache: Computational fluid dynamics. Hermosa Publishers, Albuquerque, 1972.zbMATHGoogle Scholar
  22. 22.
    P.J. Roache: The LAD, NOS and Split NOS methods for the steady-state Navier-Stokes equations. Computers and Fluids 3, 179–196, 1975.MathSciNetCrossRefzbMATHGoogle Scholar
  23. 23.
    P. Sonneveld: The method of induced dimension reduction, an iterative solver for non-symmetric linear systems. Publication in preparation.Google Scholar
  24. 24.
    R.V. Southwell: Stress calculation in frameworks by the method of systematic relaxation of constraints. Proc. Roy. Soc. London A 151, 56–95, 1935.CrossRefzbMATHGoogle Scholar
  25. 25.
    E.L. Wachspress: Iterative solution of elliptic systems. Prentice-Hall, Inc., Englewood Cliffs, N.J., 1966.zbMATHGoogle Scholar
  26. 26.
    P. Wesseling: The rate of convergence of a multiple grid method. To appear in the Proceedings of the Biennial Conference on Numerical Analysis, Dundee, 1979, Lecture Notes in Mathematics, Springer-Verlag.Google Scholar
  27. 27.
    D.M. Young: Iterative methods for solving partial difference methods of elliptic type. Trans. Amer. Math. Soc. 76, 92–111, 1954.MathSciNetCrossRefzbMATHGoogle Scholar
  28. 28.
    P.J. Roache and M.A. Ellis: The BID method for the steady-state Navier-Stokes equations. Computers and Fluids 3, 305–321, 1975.MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer-Verlag 1980

Authors and Affiliations

  • P. Wesseling
    • 1
  • P. Sonneveld
    • 1
  1. 1.Dept. of MathematicsDelft University of TechnologyDelftThe Netherlands

Personalised recommendations