Advertisement

Strange attractors and characteristic exponents of turbulent flows

  • David Ruelle
Conference paper
  • 611 Downloads
Part of the Lecture Notes in Mathematics book series (LNM, volume 771)

Keywords

Invariant Measure Unstable Manifold Ergodic Theorem Strange Attractor Characteristic Exponent 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    R. Bowen and D. Ruelle. The ergodic theory of Axiom A flows. Inventiones Math. 29, 181–202 (1975).MathSciNetCrossRefzbMATHGoogle Scholar
  2. [2]
    M. Hénon. A two-dimensional mapping with a strange attractor. Commun. math. Phys. 50, 69–77 (1976).MathSciNetCrossRefzbMATHGoogle Scholar
  3. [3]
    Ju. I. Kifer. On small random perturbations of some smooth dynamical systems. Izv. Akad. Nauk SSSR. Ser. Mat. 38 (5), 1091–1115 (1974). English translation Math. USSR Izv. 8, 1083–1107 (1974).MathSciNetGoogle Scholar
  4. [4]
    E.N. Lorenz. Deterministic nonperiodic flow. J. atoms. Sci. 20, 130–141 (1963).CrossRefGoogle Scholar
  5. [5]
    V.I. Oseledec. A multiplicative ergodic theorem. Ljapunov characteristic numbers for dynamical systems. Trudy Moskov. Mat. Obšč. 19, 179–210 (1968). English translation Trans. Moscow Math. Soc. 19, 197–231 (1968).MathSciNetGoogle Scholar
  6. [6]
    M.S. Raghunathan. A proof of Oseledec' multiplicative ergodic theorem. Israel J. Math. To appear.Google Scholar
  7. [7]
    D. Ruelle. A measure associated with Axiom A attractors. Amer. J. Math. 98, 619–654 (1976).MathSciNetCrossRefzbMATHGoogle Scholar
  8. [8]
    D. Ruelle. Sensitive dependence on initial condition and turbulence behavior of dynamical systems. Ann. N.Y. Acad. Sci. 316, 408–416 (1978).MathSciNetCrossRefGoogle Scholar
  9. [9]
    D. Ruelle. Ergodic theory of differentiable dynamical systems. IHES. Publ. Math. To appear.Google Scholar
  10. [10]
    D. Ruelle. Microscopic fluctuations and turbulence. Phys. Lett. 72A, 81–82 (1979).MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 1980

Authors and Affiliations

  • David Ruelle
    • 1
  1. 1.IHESBures-sur-YvetteFrance

Personalised recommendations