Advertisement

Optimisation of Hermitian methods for Navier-Stokes equations in the vorticity and stream-function formulation

  • B. Roux
  • P. Bontoux
  • Ta Phuoc Loc
  • O. Daube
Conference paper
Part of the Lecture Notes in Mathematics book series (LNM, volume 771)

Abstract

The aim of this paper is to show the efficiency of a "combined" method proposed to solve the 2D incompressible Navier-Stokes equations in the vorticity and stream-function formulation. A compact hermitian scheme is used for the stream function equation while a classical second order accurate scheme is taken for the vorticity equation. Comparisons have been made with purely hermitian or purely second order accurate methods. Numerical experiments have been carried out for a large variety of steady and unsteady, internal or external flows. For these problems, comparisons have been made with available experimental or computed data.

Keywords

Rayleigh Number Divergence Form Combine Method Secondary Vortex Elliptic Cylinder 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. ADAM, Y. 1975, J. Comp. Phys. 24, 10–22.MathSciNetCrossRefGoogle Scholar
  2. BENAZETH, J.C. 1978, Thèse de 3ème Cycle, Université de Paris VI.Google Scholar
  3. BONTOUX, P. 1978, D. Thesis, Université d'Aix-Marseille.Google Scholar
  4. BONTOUX P., FORESTIER, B. and ROUX, B. 1978, J. Mec. Appl. 2,1–26.MathSciNetGoogle Scholar
  5. BONTOUX, P., GILLY, B. and,ROUX, B. 1978, J. Comp. Phys., in press.Google Scholar
  6. BOZEMAN, J.D. and DALTON, C. 1973, J. Comp. Phys. 12, 348–363.CrossRefGoogle Scholar
  7. BURGGRAF, O.R. 1966, J. Fluid Mech. 24, 113–151.CrossRefGoogle Scholar
  8. CHENG, L.C., ROBERTSON, J.M. and, CLARK, M.E. 1974, Comp. and Fluids 2, 363–380.CrossRefGoogle Scholar
  9. COUTANCEAU, M. and BOUARD, R. 1977, J. Fluid Mech. 79, 257–272.CrossRefGoogle Scholar
  10. COUTANCEAU, M. and BOUARD, R. 1979, C.R. Acad. Sciences, Serie B, 288, 46Google Scholar
  11. DAUBE, O., and TA PHUOC LOC 1978, J. Mécanique 17, 651–678.Google Scholar
  12. DAUBE, O., and TA PHUOC LOC 1979, GAMM Conf. on Num. Math. in Fluid Mech., Cologne (to appear).Google Scholar
  13. DE VAHL DAVIS, G., and MALLINSON G.D. 1976, Comp. and Fluids, 4, 29–43.CrossRefGoogle Scholar
  14. FAIRWEATHER, G., and MITCHELL, A.R. 1967, SIAM J. Num. Anal. 4, 2.MathSciNetCrossRefGoogle Scholar
  15. FORESTIER, B., GRASSI, J.P., IMBERT, P., PELISSIER, R., and ROUX, B. 1977, INSERM-EUROMECH 92-Cardiovascular and Pulmonary Dynamics, 71, 89–102.Google Scholar
  16. GOSMAN, A.D., PUN, W.M., RUNCHAL, A.K., SPALDING, D.G. and WOLFSHTEIN, M. 1969, Heat and Mass Transfer in Recirc. Flows, Academic Press.Google Scholar
  17. HIRSH, S.R. 1975, J. Comp. Phys. 19, 90–109.MathSciNetCrossRefGoogle Scholar
  18. ISAACSON, E., and KELLER, H.B. 1966, Analysis of Numerical Methods, John Wiley.Google Scholar
  19. KRAUSE, E., HIRSCHEL, E.H., and KORDULLA, W. 1976, Comp. and Fluids, 4, 2, 77–92.MathSciNetCrossRefGoogle Scholar
  20. ORSZAG, S.A., and ISRAELI, M. 1974, Ann. Rev. of Fluid Mech. 6, 281–318.CrossRefGoogle Scholar
  21. PEACEMAN, D.W., and RACHFORD, H.H. 1955, J. Soc. Indust. Appl. Math. 3, 1.MathSciNetCrossRefGoogle Scholar
  22. PEARSON, C.E. 1965, J. Fluid Mech. 21, 611–622.CrossRefGoogle Scholar
  23. ROACHE, P.K. 1972, Comp. Fluid Dyn., Hermosa Ed., Albuquerque.Google Scholar
  24. ROUX, B., GRONDIN, J.C., BONTOUX, P., and GILLY, B. 1978, Num. Heat Transfer 1, 331–349.Google Scholar
  25. RUBIN, S.G., and KHOSLA, E.K. 1977, J. Comp. Phys. 24, 217–244.MathSciNetCrossRefGoogle Scholar
  26. SCHINKEL, W.M.M. and, HOOGENDOORN, G.J. 1978, 6th Int. Cong. on Heat Transfer, Toronto, MGZ, 287–292.Google Scholar
  27. SEKI, N., FUKUSAKO, S., and INABA, H. 1978, J. Fluid Mech. 84, 695–704.CrossRefGoogle Scholar
  28. SUN, J.S., and HANRATTY, T.J., 1969, J. Fluid Mech. 35, 369–386.CrossRefGoogle Scholar
  29. TANEDA, S. 1972, J. Phys. Soc. Japan 33, 1706–1711.CrossRefGoogle Scholar
  30. TA PHUOC LOC, and DAUBE, O. (1977), C.R. Acad. Sciences, 284, A, 1241–1243.Google Scholar
  31. TA PHUOC LOC, 1979, (to appear).Google Scholar
  32. WASCHSPRESS, E.L. 1966, Iterative Solution of Elliptic Systems, Prentice Hall.Google Scholar
  33. WILKES, J.O., and CHURCHILL, S.W. 1966, A.I. Ch. E. J. 12, 161–166.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 1980

Authors and Affiliations

  • B. Roux
    • 1
  • P. Bontoux
    • 1
  • Ta Phuoc Loc
    • 2
  • O. Daube
    • 2
  1. 1.Institut de Mécanique des Fluides de MarseilleMarseille
  2. 2.Laboratoire d'Informatique pour la Mécanique et les Sciences de l'IngénieurOrsay Cedex

Personalised recommendations