On the convergence rate of nonstationary Navier-Stokes approximations

  • Reimund Rautmann
Conference paper
Part of the Lecture Notes in Mathematics book series (LNM, volume 771)


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Adams, R.A., Sobolev Spaces, Academic Press, New York 1975.zbMATHGoogle Scholar
  2. 2.
    Cattabriga, L., Su un problema al contorno relativo al sistema di equazioni di Stokes, Rend. Mat. Sem. Univ. Padova 31 (1961) 308–340.MathSciNetzbMATHGoogle Scholar
  3. 3.
    Foias, C., Statistical study of Navier-Stokes equations I, Rend. Mat. Sem. Univ. Padova 48 (1972) 219–348.MathSciNetzbMATHGoogle Scholar
  4. 4.
    Foias, C., Temam, R., Some analytic and geometric properties of the solutions of the evolution Navier-Stokes equations, Prepublication Univ. de Paris-Sud, Orsay, 1979.zbMATHGoogle Scholar
  5. 5.
    Friedman, A., Partial Differential Equations, Holt, Rinehart and Winston, New York 1969.zbMATHGoogle Scholar
  6. 6.
    Heywood, J.G., On nonstationary Stokes flow past an obstacle, Indiana Univ. Math. J. 24 (1974) 271–284.MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Heywood, J.G., The Navier-Stokes equations: On the existence, regularity and decay of solutions, Preprint, Univ. of British Columbia, Vancouver 1978.Google Scholar
  8. 7a.
    Heywood, J.G., Classical Solutions of the Navier-Stokes Equations (these proceedings).Google Scholar
  9. 8.
    Hopf, E., Über die Anfangswertaufgabe für die hydrodynamischen Grundgleichungen, Math. Nachr. 4 (1951) 213–231.MathSciNetCrossRefzbMATHGoogle Scholar
  10. 9.
    Ito, S., The existence and the uniqueness of regular solution of non-stationary Navier-Stokes equation, J. Fac. Sci. Univ. Tokyo Sect. I A, 9 (1961) 103–140.MathSciNetzbMATHGoogle Scholar
  11. 10.
    Jörgens, K., Rellich, F., Eigenwerttheorie gewöhnlicher Differentialgleichungen Springer, Berlin 1976.CrossRefzbMATHGoogle Scholar
  12. 11.
    Kaniel, S., Shinbrot, M., The initial value problem for the Navier-Stokes equations, Arch. Rat. Mech. An. 21 (1966) 270–285.MathSciNetzbMATHGoogle Scholar
  13. 12.
    Ladyženskaja, O.A., The Mathematical Theory of Viscous Incompressible Flow, Second Edition, Gordon and Breach, New York (1969).Google Scholar
  14. 13.
    Lang, S., Real Analysis, Addison-Wesley Publ., Reading (Mass.) 1973.Google Scholar
  15. 14.
    Leis, R., Vorlesungen über partielle Differentialgleichungen zweiter Ordnung, Bibliographisches Institut, Mannheim 1967 (BI 165/165 a).zbMATHGoogle Scholar
  16. 15.
    Métivier, G., Etude asymptotique des valeurs propres et de la fonction spectrale des problèmes aux limites. Thèse, Univ. de Nice 1976.Google Scholar
  17. 16.
    Prodi, G., Teoremi di tipo locale per il sistema di Navier-Stokes e stabilità delle soluzione stazionarie Rend. Mat. Sem. Univ. Padova 32 (1962) 374–397.MathSciNetzbMATHGoogle Scholar
  18. 17.
    Rautmann, R., On the convergence of a Galerkin method to solve the initial value problem of a stabilized Navier-Stokes equation, Numerische Behandlung von Differentialgleichungen, edited by R. Ansorge, L. Collatz, G. Hämmerlin, W. Törnig, ISNM 27, Birkhäuser, Basel (1975) 255–264.Google Scholar
  19. 18.
    Rautmann, R., Eine Fehlerschranke für Galerkinapproximationen lokaler Navier-Stokes-Lösungen, Constructive Methods for Nonlinear Boundary Value Problems and Nonlinear Oscillations, edited by J. Albrecht, L. Collatz, K. Kirchgässner, ISNM 48, Birkhäuser, Basel (1979) 110–125.CrossRefGoogle Scholar
  20. 19.
    Serrin, J., The initial value problem for the Navier-Stokes equations, Nonlinear Problems, edited by R.E. Langer, The University of Wisconsin Press, Madison, 1963.Google Scholar
  21. 20.
    Shinbrot, M., Lectures on Fluid Mechanics, Gordon and Breach, New York 1973.zbMATHGoogle Scholar
  22. 21.
    Taylor, A.E., Introduction to Functional Analysis, Wiley, New York 1958.zbMATHGoogle Scholar
  23. 22.
    Temam, R., Navier-Stokes Equations, North-Holland Publ. Comp., Amsterdam 1977.zbMATHGoogle Scholar
  24. 23.
    Walter, W., Differential and Integral Inequalities, Springer, Berlin 1970.CrossRefGoogle Scholar
  25. 24.
    Weyl, H., The method of orthogonal projection, Duke Math. J. 7 (1940) 411–444.MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer-Verlag 1980

Authors and Affiliations

  • Reimund Rautmann
    • 1
  1. 1.Fachbereich Mathematik-Informatik derGesamthochschule PaderbornPaderbornGermany

Personalised recommendations