Advertisement

The implicit difference schemes for numerical solving the Navier-Stokes equations

  • V. M. Kovenya
  • N. N. Yanenko
Conference paper
  • 619 Downloads
Part of the Lecture Notes in Mathematics book series (LNM, volume 771)

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    P.Peyret, H.Viviand. Computatian of Viscous Compressible Flows Based on the Navier-Stokes. AGARD-AG-212, 1975.Google Scholar
  2. 2.
    N.N.Yanenko. The Method of Fractional Steps. New-York, 1971.Google Scholar
  3. 3.
    J. Douglas and J.E. Gunn. A General Formulation of Alternating Direction Method. Numerische Mathematik, vol.6, 1964, pp.428–453.MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    N.N.Yanenko, V.D.Frolov, V.E.Neuvazhaev. O primenenii metoda rasshepleniya dlya chislennogo rascheta dvizheniya teploprovodnogo gaza v krivolineynykh koordinatakh. Izvestiya SO AN SSSR ser.techn.nauk, t.8, No2, 1967.Google Scholar
  5. 5.
    V.I.Polezhaev. Chislennoye resheniye sistemy dvymernykh nestatsionarnykh uravneniy Navier-Stoksa dlya szhimaemogo gaza. Izvestiya AN SSSR. Mekh.Zhidk. i Gaza, No2, 1967.Google Scholar
  6. 6.
    V.M.Kovenya. Application of Implicit Difference Schemes to the Solution of Aerodynamic Problems. Lecture Notes in Physics, vol.58, 1976.Google Scholar
  7. 7.
    R.M.Beam, R.F.Warming. An Implicit Finite-Difference Algorithm for Hyperbolic System in Conservation Law Form. Journal of Computational Physics, vol.22, Sept. 1976.Google Scholar
  8. 8.
    W.R.Briley, H.McDonald.Solution of the Multidimensional Compressible Navier-Stokes Equations by a Generalized Implicit Method. Journal of Computational Physics, vol.224, No4, 1977.Google Scholar
  9. 9.
    J.S.Shang, W.L.Hankey. Numerical Solution of the Navier-Stokes for a Three-Dimensional Corner. AIAA Journal, vol.15, No11, 1977.Google Scholar
  10. 10.
    A.I.Tolstykh. O neyavnykh raznostnykh skhemakh tret'yego poryadka tochnosti dlya mnogomernykh zadach.ZhVM, t.16, No5,1976.Google Scholar
  11. 11.
    L.I.Severinov. Sposob resheniya nelinejnykh raznostnykh kraevykh zadach mekhaniki sploshnoj sredy, ZhVM i MF, t.8, No4, 1978.Google Scholar
  12. 12.
    N.N.Yanenko, V.M.Kovenya. A Difference Method for Solving the Multidimensional Equations of Gas Dynamics. Sovjet.Math.Dokl., vol.18, No1, 1977.Google Scholar
  13. 13.
    V.M.Kovenya, N.N.Yanenko. Raznostnaya skhema na podvizhnykh setkakh dlya resheniya uravnenij vyazkogo gaza. ZnVM i MF, t.19, No1, 1979.Google Scholar
  14. 14.
    R.M.Beam, R.F.Warming. An Implicit Factored Scheme for the Compressible Navier-Stokes Equations, AIAA Journal, vol.16, No4, 1978.Google Scholar
  15. 15.
    J.T.Steger. Implicit Finite-Difference Simulation of Flow about Arbitrart Two-Dimensional Geometries. AIAA Journal, vol.16, No7, 1978.Google Scholar
  16. 16.
    A.A.Samarsky, Yu.P.Popov. Raznostnye Skhemy Gazovoi Dinamiki. M., "Nauka", 1975.Google Scholar
  17. 17.
    J.F.Thompson, F.C.Thames and C.M.Msstin. Automatic Numerical Generation of Body-Fitted Curvilinear Coordinate System for Field Containing a Number of Arbitrary Two-Dimensional Bodies. Journal of Computational Physics, vol.15, July 1974.Google Scholar
  18. 18.
    A.I.Tolstykh. O metode chislennogo resheniya uravnenij Navier-Stoksa szhimaemogo gaza v shirokom diapazone chisel Reynoldsa. Dokl. AN SSSR, t.210, No1, 1973.Google Scholar
  19. 19.
    N.N.Yanenko, N.T.Danaev, V.D.Lisejkin. O Variatsionnom Metode Postroyeniya Setok. In: Chislennye metody Mekhaniki Sploshnoi Sredy, t.8, No4, Novosibirsk, 1977.Google Scholar
  20. 20.
    M. Vinokur. Conservation Equations of Gas Dynamics in Curvilinear System. Journal of Computational Physics, vol.14, No2, 1974, pp.105–125.MathSciNetCrossRefzbMATHGoogle Scholar
  21. 21.
    N.N. Yanenko, V.M. Kovenya, V.D. Fomin, E.F. Vorozhtsov, V.D. Liseikin. On Some Methods for the Numerical Simulation of Flow with Complex Structure, Lecture Notes in Physics,vol.90, 1979.Google Scholar

Copyright information

© Springer-Verlag 1980

Authors and Affiliations

  • V. M. Kovenya
    • 1
  • N. N. Yanenko
    • 1
  1. 1.Institute of Theoretical & Applied MechanicsUSSR Academy of SciencesNovosibirsk

Personalised recommendations