Advertisement

Some decay properties of solutions of the Navier-Stokes equations

  • George H. Knightly
Conference paper
Part of the Lecture Notes in Mathematics book series (LNM, volume 771)

Keywords

Vector Field Stoke Flow Decay Property Steady Velocity Finite Body 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bemelmans, J., Eine Aussenraumaufgabe für die instationären Navier-Stokes-Gleichungen, Math. Z. 162(1978), 145–173.MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Finn, R., Estimates at infinity for stationary solutions of the Navier-Stokes equations, Bull. Math. Soc. Sci., Math. Phys. R.P. Roumaine, 3(51) (1959), 387–418.MathSciNetzbMATHGoogle Scholar
  3. 3.
    Finn, R., On the exterior stationary problem for the Navier-Stokes equations, and associated perturbation problems, Arch. Rational Mech. Anal. 19(1965), 363–406.MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Finn, R., Mathematical questions relating to viscous fluid flow in an exterior domain, Rocky Mt. J. Math. 3(1973), 107–140.MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Finn, R., An energy theorem for viscous fluid motions, Arch. Rational Mech. Anal. 6(1960), 371–381.MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Fujita, H. and T. Kato, On the Navier-Stokes initial value problem, I, Stanford University Technical Report #131, 1963.Google Scholar
  7. 7.
    Heywood, J., The exterior nonstationary problem for the Navier-Stokes equations, Acta. Math. 129(1972), 11–34.MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Heywood, J., On nonstationary Stokes flow past an obstacle, Indiana Univ. Math. J. 24(1974), 271–284.MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Heywood, J., The Navier-Stokes equations: on the existence, regularity and decay of solutions, preprint, University of British Columbia, 1978.Google Scholar
  10. 10.
    Knightly, G., On a class of global solutions of the Navier-Stokes equations, Arch. Rational Mech. Anal. 21(1966), 211–245.MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Knightly, G., Stability of uniform solutions f the Navier-Stokes equations in n-dimensions, (Tech. Summary Rep. 1085, Mathematics Research Center, United States Army, University of Wisconsin, Madison, 1970).Google Scholar
  12. 12.
    Knightly, G., A Cauchy problem for the Navier-Stokes equations in R n. SIAM J. Math. Anal. 3(1972), 506–511.MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Knightly, G., Some asymptotic properties of solutions of the Navier-Stokes equations, Dynamical Systems, A.R. Bednarek and L. Cesari, eds., Academic Press, New York, 1977, 139–155.CrossRefGoogle Scholar
  14. 14.
    Masuda, K., On the stability of incompressible viscous fluid motions past objects, J. Math. Soc. Japan 27(1975), 294–327.MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Oseen, C. W., Neuere Methoden und Ergebnisse in der Hydrodynamik, Akademische Verlagsgesllschaft, Leipsig, 1927.zbMATHGoogle Scholar

Copyright information

© Springer-Verlag 1980

Authors and Affiliations

  • George H. Knightly
    • 1
  1. 1.Department of MathematicsUniversity of MassachusettsAmherstUSA

Personalised recommendations