Advertisement

A survey on the functional dynamical system generated by the Navier-Stokes equations

  • C. Foias
Conference paper
  • 625 Downloads
Part of the Lecture Notes in Mathematics book series (LNM, volume 771)

Keywords

Hausdorff Dimension Hausdorff Measure Hydrodynamic Stability Lorenz Attractor Spectral Exponent 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    H. Federer, Geometric measure theory, Springer (New York, 1969).zbMATHGoogle Scholar
  2. [2]
    C. Foias, Solutions statistiques des équations de Navier-Stokes, Cours au Collège de France (1974).Google Scholar
  3. [3]
    C. Foias-R. Temam, Structure of the set of stationary solutions of the Navier-Stokes equations,Comm. Pure Appl. Math.,30 (1977), 149–164.MathSciNetCrossRefzbMATHGoogle Scholar
  4. [4]
    C. Foias-R. Temam, Remarques sur les équations de Navier-Stokes stationnaires et les problèmes succesifs de bifurcation,Ann. Sc. Norm. Sup. Pisa,(IV)5(1978),29–63.MathSciNetzbMATHGoogle Scholar
  5. [5]
    C. Foias-R. Temam, Some analytic and geometric properties of the evolution Navier-Stokes equations, Journ. Math. Pures Appl., 58 (1979),339–368.MathSciNetzbMATHGoogle Scholar
  6. [6]
    C. Foias-R. Temam, Sur certaines propriétés génériques des équations de Navier-Stokes,Orsay(1974); to appear.Google Scholar
  7. [7]
    E. Hopf, A mathematical example displaying feature of turbulence, Comm. Pure Appl. Math., 1(1948),303–322.MathSciNetCrossRefzbMATHGoogle Scholar
  8. [8]
    E. Hopf, Abzweigung einer periodischen Lösung eines Differentialsystems, Berichten Math.-Phys. Kl. Wiss. Leipzig,94(1942),1–22.Google Scholar
  9. [9]
    G. Iooss, Direct bifurcation of a steady solution of the Navier-Stokes equations into an invariant torus,Turbulence and Navier-Stokes equations, Orsay(1975),Lecture Notes in Math.,No565, Springer(1976),69–84.Google Scholar
  10. [10]
    V.I. Iudovich, Secondary flows and fluid instability between rotating cylinders,Prikl. Mat. Meh.,30(1966),688–698.MathSciNetGoogle Scholar
  11. [11]
    D.D. Joseph, Stability of fluid motions. (I&II), Springer(Berlin, 1976).zbMATHGoogle Scholar
  12. [12]
    J.P. Kahane, Mesures et dimensions,Turbulence and Navier-Stokes equations,Orsey(1975),Lecture Notes in Math.,No565,Springer (1976),94–103.Google Scholar
  13. [13]
    K. Kirchgässner, Bifurcation in nonlinear hydrodynamic stability, SIAM Rev., 17(1975),662–683.MathSciNetCrossRefzbMATHGoogle Scholar
  14. [14]
    K. Kirchgassner-P. Sorger, Branching analysis for the Taylor problem,Quart. J. Mech. Appl. Anal.,32(1969),183–209.MathSciNetCrossRefzbMATHGoogle Scholar
  15. [15]
    O.A. Ladyzenskaya, The mathematical theory of Viscous incompressible fluids,Gordon-Breach(New York,1963).Google Scholar
  16. [16]
    L.D. Landau-E.M. Lifshitz, Fluid Mechanics, Pergamon(Oxford,1959).zbMATHGoogle Scholar
  17. [17]
    J. Leray, Sur le mouvement d'un liquide visqueux emlissant l'espace,Acta Math.,63(1934),193–249.MathSciNetCrossRefGoogle Scholar
  18. [18]
    J.L. Lions, Quelques méthodes de résolution des problèmes aux limites non linéaires,Dunod (Paris,1969).zbMATHGoogle Scholar
  19. [19]
    J.L. Lions-G. Prodi, Un théorème d'existence et unicité dans les équations de Navier-Stokes en dimension 2,C.R. Acad. Sci. Paris, 248(1959),3519–3521.MathSciNetzbMATHGoogle Scholar
  20. [20]
    E.N. Lorenz, Deterministic nonperiodic flows,Journ. Atmos. Sci., 20(1963),130–141.CrossRefGoogle Scholar
  21. [21]
    J. Mallet-Paret, Negatively invariant sets of compact maps and an extension of a theorem of Cartwright,Journ. Diff. Eq.,22(1976), 331–348.MathSciNetCrossRefzbMATHGoogle Scholar
  22. [22]
    B. Mandelbrot, Inermittent turbulence and fractal kurtosis and the spectral exponent 5/3+D,Turbulence and the Navier-Stokes equations, Orsay(1975),Lecture Notes in Math.,No565,Springer(1976),121–145.Google Scholar
  23. [23]
    G. Métivier, Etude asymptotique des valeurs propres et de la fonction spectrale de problèmes aux limites,Thèse,Univ. de Nice(1976).Google Scholar
  24. [24]
    G. Minea, Remarques sur l'unicité de la solution d'une équation de type Navier-Stokes,Revue Roum. Math. P. Appl.,21(1976),1071–1075.MathSciNetzbMATHGoogle Scholar
  25. [25]
    P.H. Rabinowitz, Existence and nonuniqueness of rectangular solutions of the Bénard problem,Arch. Rat. Mech. Anal.,29(1968),32–57.MathSciNetCrossRefzbMATHGoogle Scholar
  26. [26]
    D. Ruelle, Turbulence and Axiome A attractor,Proc. Intern. School math. Phys.,Univ. di Camerino(1974),162–181.Google Scholar
  27. [27]
    D. Ruelle, A Lorenz attractor and the problem of turbulence,Turbulence and Navier-Stokes equations,Orsay(1975),No565,Springer (1976),146–158.Google Scholar
  28. [28]
    D. Ruelle-F. Takens, On the nature of turbulence,Comm. Math. Phys.,20(1971),167–192;23(1971),343–344.MathSciNetCrossRefzbMATHGoogle Scholar
  29. [29]
    J.C. Saut-R. Temam, Propriétés de l'ensemble des solutions stationnaires ou périodiques des équations de Navier-Stokes,C.R. Acad. Sci. Paris,248(1977),A,673–676; Generic properties of the Navier-Stokes equations,Orsay(1979).MathSciNetzbMATHGoogle Scholar
  30. [30]
    V. Sheffer, Turbulence and Hausdorff dimension,Turbulence and Navier-Stokes equations,Orsay(1975),Lecture Notes in Math.,No565, Springer(1976),174–183.Google Scholar
  31. [31]
    R. Temam, Navier-Stokes equations.Theory and numerical analysis, North-Holland(New York,1977).Google Scholar
  32. [32]
    R. Temam, Une propriété générique de l'ensemble des solutions stationnaires ou périodiques des équations de Navier-Stokes,Funct. Anal. and Numerical Anal.,Japan-France Seminar,Tokyo-Kyoto(1976), Japan Soc. for the Prom. of Sci. (1978),483–493.Google Scholar
  33. [33]
    W. Velte, Stabilität und Verzweigung stationäre Lösungen des Navier-Stokes Gleichungen beim Taylor Problem,Arch. Rat. Mech. Anal., 22(1966),1–14.MathSciNetCrossRefzbMATHGoogle Scholar
  34. [34]
    R.F. Williams, The structure of the Lorenz attractors,Turbulence Seminar,Berkeley(1976/77),Lecture Notes in Math.,No615,Springer (1977),94–112.Google Scholar

Copyright information

© Springer-Verlag 1980

Authors and Affiliations

  • C. Foias
    • 1
  1. 1.Université de Paris-SudOrsayFrance

Personalised recommendations