Skip to main content

A finite element approximation of Navier-Stokes equations for incompressible viscous fluids. Iterative methods of solution

  • Conference paper
  • First Online:
Approximation Methods for Navier-Stokes Problems

Part of the book series: Lecture Notes in Mathematics ((LNM,volume 771))

Abstract

We present in this paper a method for the numerical solution of the steady and unsteady Navier-Stokes equations for incompressible viscous fluids. This method is based on the following techniques:

  1. A mixed finite element approximation acting on a pressure-velocity formulation of the problem,

  2. A time discretization by finite differences for the unsteady problem,

  3. An iterative method using — via a convenient nonlinear least square formulation — a conjugate gradient algorithm with scaling; the scaling makes a fundamental use of an efficient Stokes solver associated to the above mixed finite element approximation.

The results of numerical experiments are presented and analyzed. We conclude this paper by an appendix introducing a new upwind finite element approximation; we discuss in this appendix the solution by this new method of \(- \varepsilon \Delta u + \underset{\raise0.3em\hbox{$\smash{\scriptscriptstyle\thicksim}$}}{\beta } \cdot \underset{\raise0.3em\hbox{$\smash{\scriptscriptstyle\thicksim}$}}{\nabla } u = f\) on Ω, u=0 on ∂Ω (Ω : bounded domain of ℝ2), but we plan to apply it to the solution of Navier-Stokes problems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 44.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 59.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. M.O. BRISTEAU, R. GLOWINSKI, J. PERIAUX, P. PERRIER, O. PIRONNEAU, G. POIRIER, Application of Optimal Control and Finite Element Methods to the calculation of Transonic Flows and Incompressible Viscous Flows, Rapport de Recherche No 294, Laboria, Avril 1978 (also to appear in Numerical Methods in Applied Fluid Dynamics, B. Hunt ed., Acad. Press, London).

    Google Scholar 

  2. M.O. BRISTEAU, R. GLOWINSKI, J. PERIAUX, P. PERRIER, O. PIRONNEAU, On the numerical solution of nonlinear problems in fluid dynamics by least squares and finite element methods (I) Least square formulations and conjugate gradient solution of the continuous problems, Comp. Meth. Applied Mech. Eng., 17/18 (1979), p. 619–657.

    Article  MathSciNet  MATH  Google Scholar 

  3. D.K. GARTLING, E.B. BECKER, Finite Element Analysis of Viscous Incompressible Fluid Flow, 1, Comp. Meth. Applied Mech. Eng., 8 (1976), p. 51–60.

    Article  MathSciNet  MATH  Google Scholar 

  4. D.K. GARTLING, E.B. BECKER, Finite Element Analysis of Viscous Incompressible Fluid Flow, 2, Comp. Meth. Applied Mech. Eng., 8 (1976), p. 127–138.

    Article  MathSciNet  MATH  Google Scholar 

  5. T.J.R. HUGHES, W.K. LIU, A. BROOKS, Finite Element Analysis of Incompressible Viscous Flows by the Penalty Function Formulation, J. of Comp. Physics, 30, (1979), p. 1–60.

    Article  MathSciNet  MATH  Google Scholar 

  6. M. BERCOVIER, M. ENGELMAN, A Finite Element for the Numerical Solution of Viscous Incompressible Flows, J. of Comp. Physics, 30, (1979), p. 181–201.

    Article  MathSciNet  MATH  Google Scholar 

  7. M. FORTIN, F. THOMASSET, Mixed Finite-Element Methods for Incompressible Flow problems, J. of Comp. Physics, 31, (1979), p. 113–145.

    Article  MathSciNet  MATH  Google Scholar 

  8. V. GIRAULT, P.A. RAVIART, Finite Element Approximation of Navier-Stokes equations, Lecture Notes in Math., Springer-Verlag (to appear).

    Google Scholar 

  9. P. LE TALLEC, Simulation Numérique d'Ecoulements Visqueux Incompressibles par des Méthodes d'Eléments Finis Mixtes. Thèse de 3ème cycle, Université Pierre et Marie Curie, Paris, 1978.

    Google Scholar 

  10. C. JOHNSON, A mixed finite element method for the Navier-Stokes equations, R.A.I.R.O. Anal. Num., 12, (1978), p. 335–348.

    MathSciNet  MATH  Google Scholar 

  11. R. GLOWINSKI, O. PIRONNEAU, On a mixed finite element approximation of the Stokes problem (I). Convergence of the approximate solutions, Num. Math. (to appear).

    Google Scholar 

  12. J.L. LIONS, Quelques méthodes de résolution des problèmes aux limites non linéaires, Dunod, Paris, 1969.

    MATH  Google Scholar 

  13. O.A. LADYSHENSKAYA, The mathematical theory of viscous incompressible flows, Gordon and Breach, 1969.

    Google Scholar 

  14. R. TEMAM, Theory and Numerical Analysis of the Navier-Stokes equations, North-Holland, Amsterdam, 1977.

    MATH  Google Scholar 

  15. L. TARTAR, Topics in nonlinear analysis, Public. Math. d'Orsay, 78.13, Université Paris-Sud, Dept. of Maths., 1978.

    Google Scholar 

  16. J. PERIAUX, Résolution de quelques problèmes non linéaires en Aerodynamique par des méthodes d'éléments finis et de moindres carrés fonctionnels, Thèse de 3ème cycle, Université Pierre et Marie Curie, Paris, 1979.

    Google Scholar 

  17. R. GLOWINSKI, O. PIRONNEAU, On Numerical methods for the Stokes problem. Chapter 13 of Energy Methods in Finite Element Analysis, R. Glowinski, E.Y. Rodin, O.C. Zienkiewicz Ed., J. Wiley and Sons, Chichester, 1979, p. 243–264.

    Google Scholar 

  18. R.A. ADAMS, Sobolev Spaces, Acad. Press, New-York, 1975.

    MATH  Google Scholar 

  19. J.L. LIONS; E. MAGENES, Non-homogeneous boundary value problems and applications, 1, Springer, New-York, 1972.

    Book  MATH  Google Scholar 

  20. E. NECAS, Les Méthodes Directes en théorie des équations elliptiques, Masson, Paris, 1967.

    Google Scholar 

  21. J.T. ODEN, J.N. REDDY, An introduction to the mathematical theory of finite elements, J. Wiley and Sons, New-York, 1976.

    MATH  Google Scholar 

  22. P. LE TALLEC, Convergence of a mixed finite element approximation of the Navier-Stokes equations (to appear).

    Google Scholar 

  23. E. POLAK, Computational Methods in Optimization, Acad. Press, New-York, 1971.

    Google Scholar 

  24. R. GLOWINSKI, J. PERIAUX, O. PIRONNEAU, On a mixed finite element approximation of the Stokes' problem (II). Solution of the approximate problems (to appear).

    Google Scholar 

  25. R. GLOWINSKI, O. PIRONNEAU, Numerical methods for the biharmonic equation and for the two-dimensional Stokes problem, SIAM Review, 21, 2, (1979), p. 167–212.

    Article  MathSciNet  MATH  Google Scholar 

  26. R. GLOWINSKI, O. PIRONNEAU, Approximation par éléments finis mixtes du problème de Stokes en formulation vitesse-pression. Convergence des solutions approchées. C.R. Acad. Sc. Paris, T. 286 A, (1978), p. 181–183.

    MathSciNet  MATH  Google Scholar 

  27. R. GLOWINSKI, O. PIRONNEAU, Approximation par éléments finis mixtes du problème de Stokes en formulation vitesse-pression. Résolution des problèmes approchés. C.R. Acad. Sc. Paris, T. 286 A, (1978), p. 225–228.

    MathSciNet  MATH  Google Scholar 

  28. R. GLOWINSKI, J. PERIAUX, O. PIRONNEAU, An efficient preconditioning scheme for iterative numerical solutions of partial différential equations, Applied Math. Modelling (to appear).

    Google Scholar 

  29. A.G. HUTTON, A general finite element method for vorticity and stream function applied to a laminar separated flow, Central Electricity Generating Board Report, Research Dept., Berkeley Nuclear Laboratories, August 1975.

    Google Scholar 

  30. M. TABATA, A finite element approximation corresponding to the upwind finite differencing, Memoirs of Numerical Mathematics (Univ. of Kyoto and Tokyo), 4, (1977), p. 47–63.

    MathSciNet  MATH  Google Scholar 

  31. J.C. HEINRICH, P.S. HUYAKORN, O.C. ZIENKIEWICZ, A.R. MITCHELL, An "upwind" finite element scheme for two dimensional convective transport equation, Int. J. Num. Meth. Eng., 11, (1977), p. 131–143.

    Article  MATH  Google Scholar 

  32. I. CHRISTIE, A.R. MITCHELL, Upwinding of high order Galerkin methods in conduction-convection problems, Int. J. Num. Meth. Eng., Vol. 12, No 11, 1978, p. 1764–1771.

    Article  MATH  Google Scholar 

  33. C.V. RAMAKRISHNAN, An upwind finite element scheme for the unsteady convective diffusive transport equation, Applied Math. Modelling, 3, (1979), p. 280–284.

    Article  MATH  Google Scholar 

  34. O. WIDLUND, A Lanczos method for a class of non symmetric systems of linear equations, SIAM J. Num. Anal., 15 (1978), 4, p. 801–812.

    Article  MathSciNet  MATH  Google Scholar 

  35. B. ENGQUIST, H.O. KREISS, Difference and Finite Element Methods for Hyperbolic Differential Equations, Comp. Meth. Appl. Mech. Eng., 17/18, (1979), p. 581–596.

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Reimund Rautmann

Rights and permissions

Reprints and permissions

Copyright information

© 1980 Springer-Verlag

About this paper

Cite this paper

Bristeau, M.O., Glowinski, R., Mantel, B., Periaux, J., Perrier, P., Pironneau, O. (1980). A finite element approximation of Navier-Stokes equations for incompressible viscous fluids. Iterative methods of solution. In: Rautmann, R. (eds) Approximation Methods for Navier-Stokes Problems. Lecture Notes in Mathematics, vol 771. Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0086902

Download citation

  • DOI: https://doi.org/10.1007/BFb0086902

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-09734-1

  • Online ISBN: 978-3-540-38550-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics