Advertisement

CO+α-semigroups for flows past obstacles and for flows with capillary surfaces

  • J. Bemelmans
Conference paper
Part of the Lecture Notes in Mathematics book series (LNM, volume 771)

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    AGMON, S.-DOUGLIS, A.-NIRENBERG, L. Estimates Near the Boundary for Solutions of Elliptic Partial Differential Equations Satisfying General Boundary Conditions, II. Comm. Pure Appl. Math. 17 (1964), 35–92.MathSciNetCrossRefzbMATHGoogle Scholar
  2. [2]
    BEMELMANS, J. Eine Aussenraumaufgabe für die instationären Navier-Stokes-Gleichungen. Math. Z. 162 (1978), 145–173.MathSciNetCrossRefzbMATHGoogle Scholar
  3. [3]
    BEMELMANS, J. Klassische Lösungen der instationären Navier-Stokes-Gleichungen in Gebieten mit beweglichen Rändern. To appear.Google Scholar
  4. [4]
    BOCK, D.N. On the Navier-Stokes Equations in Noncylindrical Domains. J. Diff. Equ. 25 (1977), 151–162.MathSciNetCrossRefzbMATHGoogle Scholar
  5. [5]
    FAXÉN, H. Fredholmsche Integralgleichungen zu der Hydrodynamik zäher Flüssigkeiten, I. Arkiv för Mat., Astr. och Fys. 21A (1928/29), 1–40.Google Scholar
  6. [6]
    FINN, R. An Energy Theorem for Viscous Fluid Motions. Arch. Rat. Mech. Anal. 6 (1960), 371–381.MathSciNetCrossRefzbMATHGoogle Scholar
  7. [7]
    FINN, R. Stationary Solutions of the Navier-Stokes Equations. Proc. Symp. Appl. Math. 17 (1965), 121–153.CrossRefzbMATHGoogle Scholar
  8. [8]
    FINN, R. Mathematical Questions Relating to Viscous Fluid Flow in an Exterior Domain. Rocky Mountain J. Math. 3 (1973), 107–140.MathSciNetCrossRefzbMATHGoogle Scholar
  9. [9]
    FUJITA, H.-KATO, T. On the Navier-Stokes initial value problem I. Arch. Rat. Mech. Qual. 16 (1964), 269–315.MathSciNetCrossRefzbMATHGoogle Scholar
  10. [10]
    FUJITA, H.-SAUER, N. On existence of weak solutions of the Navier-Stokes equations in regions with moving boundaries. J. Fac. Sci. Univ. Tokyo Sect. I 28 (1970), 403–420.MathSciNetzbMATHGoogle Scholar
  11. [11]
    HEINZ, E. Über die Existenz einer Fläche konstanter mittlerer Krümmung bei vorgegebener Berandung. Math. Ann. 127 (1954), 258–287.MathSciNetCrossRefzbMATHGoogle Scholar
  12. [12]
    HILDEBRANDT, S. Randwertprobleme für Flächen mit vorgeschriebener mittlerer Krümmung und Anwendungen auf die Kapillaritätstheorie, I: Fest vorgegebener Rand. Math. Z. 112 (1969), 205–213.MathSciNetCrossRefzbMATHGoogle Scholar
  13. [13]
    INOUE, A.-WAKIMOTO, M. On existence of solutions of the Navier-Stokes equations in a time dependent domain. J. Fac. Sci. Univ. Tokyo Sect. IA, 24 (1977), 303–320.MathSciNetzbMATHGoogle Scholar
  14. [14]
    KATO, T.-FUJITA, H. On the nonstationary Navier-Stokes system. Rend. Sem. Mat. Univ. Padova 32 (1962), 243–260.MathSciNetzbMATHGoogle Scholar
  15. [15]
    KIELHÖFER, H. Halbgruppen und semilineare Anfangs-Randwertprobleme. manuscripta math. 12 (1974), 121–154.MathSciNetCrossRefzbMATHGoogle Scholar
  16. [16]
    LADYZHENSKAYA, O.A. Initial-boundary problems for Navier-Stokes equations in domains with time-varying boundaries. Sem. in Math. V.A. Steklov Math. Inst. 11 (1970), 35–46.Google Scholar
  17. [17]
    ODQVIST, F.K.G. Über die Randwertaufgaben der Hydrodynamik zäher Flüssigkeiten. Math. Z. 32 (1930), 329–375.MathSciNetCrossRefzbMATHGoogle Scholar
  18. [18]
    ÔTANI, M.-YAMADA, Y. On the Navier-Stokes equations in non-cylindrical domains: an approach by the subdifferential operator theory. J. Fac. Sci. Univ. Tokyo Sect. IA, 25 (1978), 194–205.zbMATHGoogle Scholar
  19. [19]
    PRODI, G. Teoremi die tipo locale per il sistema di Navier-Stokes e stabilità delle soluzioni stazionarie. Rend. Sem. Mat. Univ. Padova 32 (1962), 374–397.MathSciNetzbMATHGoogle Scholar
  20. [20]
    SATHER, J.O. The Initial Boundary Value Problem for the Navier-Stokes Equations in Regions with Moving Boundaries. Ph. D. Thesis, Univ. of Minnesota, 1963.Google Scholar
  21. [21]
    SOLONNIKOV, V.A. On bounadry value problems for linear parabolic systems of differential equations of general form. Proc. Steklov Inst. Math. 83 (1965).Google Scholar
  22. [22]
    TOMI, F. A Perturbation Theorem for Surfaces of Constant Mean Curvature. Math. Z. 141 (1975), 253–264.MathSciNetCrossRefzbMATHGoogle Scholar
  23. [23]
    WAHL, W. von Gebrochene Potenzen eines elliptischen Operators und parabolische Differentialgleichungen in Räumen hölderstetiger Funktionen. Nachr. Akad. Wiss. Göttingen Math.-Phys. Kl. II 11 (1972), 231–258.zbMATHGoogle Scholar

Copyright information

© Springer-Verlag 1980

Authors and Affiliations

  • J. Bemelmans
    • 1
  1. 1.Mathematisches Institut der Universität BonnBonn 1Germany

Personalised recommendations