Advertisement

On properties of steady viscous incompressible fluid flows

  • K. I. Babenko
Conference paper
Part of the Lecture Notes in Mathematics book series (LNM, volume 771)

Keywords

Reynolds Number Flow Problem Viscous Incompressible Fluid Plane Flow Small Reynolds Number 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Bibliography

  1. 1.
    J. Leray, Étude de diverse équations, intégrales non linéaires et de quelques problèmes que pose l'hydrodynamique, J. Math. Pures Appl. 12 (1933), 1–82.MathSciNetzbMATHGoogle Scholar
  2. 2.
    J. Leray, Les problèmes non linéaires, Enseignement Math. 35 (1936), 139–151.zbMATHGoogle Scholar
  3. 3.
    R. Finn, On the steady-state solutions of the Navier-Stokes equations, III, Acta Math. 105 (1961), 197–244.MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    O. Ladyzenskaja, Investigation of the Navier-Stokes equation for a stationary flow of an incompressible fluid, Uspehi Math. Nauk 14 (1959), no. 3(87), 75–97.MathSciNetGoogle Scholar
  5. 5.
    R. Finn, On the exterior stationary problem for the Navier-Stokes equations, and associated perturbation problems, Arch. Rational Mech. Anal. 19 (1965), 363–406.MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    F.K.G. Odqvist, Uber Randwertaufgaben der Hydrodynamik zäher Flussigkeiten, Math. Zeit. 32 (1930), 329–375.MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    K.I. Babenko, On stationary solutions of the problem of flow past a body of a viscous incompressible fluid, Mat. Sbornik Tom 91(133) (1973), 3–26.MathSciNetGoogle Scholar
  8. 8.
    R. Finn, Estimates at infinity for stationary solutions of the Navier-Stokes equations, Bull. Math. Soc. Sci. Math. Phys. R.P. Roumaine 3(51) (1959), 387–418.MathSciNetzbMATHGoogle Scholar
  9. 9.
    K.I. Babenko, M.M. Vasil'ev, Asymptotic behavior of the solution of the problem of the flow of a viscous fluid around a finite body, Preprint No. 84, Inst. Appl. Math. Moscow, 1971.Google Scholar
  10. 10.
    M.M. Vasil'ev, On the asymptotic behavior of the velocity, and forces, exerted on a body, in a stationary viscous fluid flow, Preprint Inst. Appl. Math. No. 50, (1973), Moscow.Google Scholar
  11. 11.
    D.C. Clark, The vorticity at infinity for solutions of the stationary Navier-Stokes equations in exterior domains, Indiana Univ. Math. J. 20 (1970/71), 633–654.MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    D.R. Smith, Estimates at infinity for stationary solutions of the Navier-Stokes equations in two dimensions, Arch. Rational Mech. Anal. 20 (1965), 341–372.MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    R. Finn, D.R. Smith, On the linearized hydrodynamical equations in two dimensions, Arch. Rational Mech. Anal. 25 (1967), 1–25.MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    K.I. Babenko, On the asymptotic behavior of the vorticity at large distance from a body in the plane flow of a viscous fluid, Prikl. Math. Mech. 34 (1970), 911–925.Google Scholar
  15. 15.
    D. Gilbarg, H.F. Weinberger, Asymptotic properties of Leray's solution of the stationary two-dimensional Navier-Stokes equations, Uspehi Math. Nauk Tom XXIX, 2 (1974) 109–1229.MathSciNetzbMATHGoogle Scholar
  16. 16.
    I. Proudman, J.R.A. Pearson, Expansions at small Reynolds numbers for the flow past a sphere and a circular cylinder, J. Fluid Mech. 2, 237 (1957).MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    H. Brenner, Cox R.G., The resistance to a particle of arbitrary shape in translational motion at small Reynolds number, J. Fluid Mech. 17, 561–595, (1963).MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    K.I. Babenko, The perturbation theory of stationary flows of a viscous incompressible fluid at small Reynolds numbers, Preprint Inst. Appl. Math. Moscow, No. 79, (1975).Google Scholar
  19. 19.
    K.I. Babenko, The perturbation theory of stationary flows of a viscous incompressible fluid at small Reynolds numbers, Dokl. Akad. Nauk SSSR No. 227 No. 3 (1976).Google Scholar
  20. 20.
    K.I. Babenko, On stationary solutions of the problem of a viscous incompressible fluid flow past a body, Proc. All-Union Conf. Partial Differential Equations, Moscow Univ. Publ. House (1978).Google Scholar
  21. 21.
    M.M. Vasil'ev, On a viscous incompressible fluid flow in close vicinity of a body at small Reynolds numbers, Preprint Inst. Appl. Math. No. 116, Moscow (1975).Google Scholar
  22. 22.
    M.V. Keldysh, On the completeness of eigenfunctions of some classes of not self-adjoint linear operators, Uspehi Math, Nauk Tom XXYI, 4, (1971).Google Scholar
  23. 23.
    I-Dee Chang, R. Finn, On the solutions of a class of equations occurring in continuum mechanics, with application to the Stokes paradox, Arch. Rational Mech. Anal. 7 (1961), 388–401.MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer-Verlag 1980

Authors and Affiliations

  • K. I. Babenko
    • 1
  1. 1.Keldysh Institute of Applied Mathematics Academy Nauk of the USSRMoscowRussia

Personalised recommendations