Skip to main content

A survey of local existence theories for abstract nonlinear initial value problems

  • Conference paper
  • First Online:
Nonlinear Semigroups, Partial Differential Equations and Attractors

Part of the book series: Lecture Notes in Mathematics ((LNM,volume 1394))

Abstract

This paper surveys the abstract theories concerning local-in-time existence of solutions to differential inclusions, u′(t)∈F(t,u(t)), in a Banach space. Three main approaches assume generalized compactness, isotonicity in an ordered Banach space, or dissipativeness. We consider different notions of “solution,” and also the importance of assuming or not assuming that F(t, x) is continuous in x. Other topics include Carathéodory conditions, uniqueness, semigroups, semicontinuity, subtangential conditions, limit solutions, continuous dependence of u on F, and bijections between u and F.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 34.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 46.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

16. References

  1. H. Amann, Fixed point equations and nonlinear eigenvalue problems in ordered Banach spaces, SIAM Review 18 (1976), 620–709.

    Article  MathSciNet  MATH  Google Scholar 

  2. W. Arendt, P. R. Chernoff, and T. Kato, A generalization of dissipativity and positive semigroups, J. Oper. Th. 8 (1982), 167–180.

    MathSciNet  MATH  Google Scholar 

  3. Z. Artstein, Continuous dependence of parameters: on the best possible results, J. Diff. Eqns. 19 (1975), 214–225.

    Article  MathSciNet  MATH  Google Scholar 

  4. J. P. Aubin and A. Cellina, Differential Inclusions, Grundlehren der mathematischen Wissenschaften 264, Springer-Verlag, Berlin, 1984.

    MATH  Google Scholar 

  5. J. M. Ball, Measurability and continuity conditions for nonlinear evolutionary processes, Proc. Amer. Math. Soc. 55 (1976), 353–358.

    Article  MathSciNet  MATH  Google Scholar 

  6. J. M. Ball, Finite time blow-up in nonlinear problems, pp. 189–205 in: Nonlinear Evolution Equations, proc. of a symposium held in Madison, Wisconsin, October 1977), ed. M. G. Crandall; Academic Press, N.Y., 1978.

    Google Scholar 

  7. J. Banaś, On existence theorems for differential equations in Banach spaces, Bull. Austral. Math. Soc. 32 (1985), 73–82.

    Article  MathSciNet  MATH  Google Scholar 

  8. J. Banaś and K. Goebel, Measures of noncompactness in Banach spaces, Lecture Notes in Pure and Applied Math. 60, Marcel Dekker, New York and Basel, 1980.

    MATH  Google Scholar 

  9. J. Banaś, A. Hajnosz, and S. Wędrychowicz, Relations among various criteria of uniqueness for ordinary differential equations, Commentationes Math. Univers. Carolinae 22 (1981), 59–70.

    MathSciNet  MATH  Google Scholar 

  10. P. Bénilan and J. I. Diaz, Comparison of solutions of nonlinear evolution problems with different nonlinear terms, Israel J. Math. 42 (1982), 241–257.

    Article  MathSciNet  MATH  Google Scholar 

  11. D. Biles, Existence and Continuous Dependence of Solutions of Discontinuous Differential Equations, Ph.D. thesis, Vanderbilt University, Nashville, Tennessee, 1987.

    Google Scholar 

  12. P. Binding, The differential equation x′=f o x, J. Diff. Eqns. 31 (1979), 183–199.

    Article  MathSciNet  MATH  Google Scholar 

  13. P. Binding, Bounded variation evolution equations, J. Math. Anal. Appl. 48 (1974), 70–94.

    Article  MathSciNet  MATH  Google Scholar 

  14. P. Binding, Corrections to: “Bounded variation evolution equations,” J. Math. Anal. Appl. 74 (1980), 635–636.

    Article  MathSciNet  MATH  Google Scholar 

  15. A. Bressan, On differential relations with lower continuous right-hand side: an existence theorem, J. Diff. Eqn. 37 (1980), 89–97.

    Article  MathSciNet  MATH  Google Scholar 

  16. A. Bressan, Solutions of lower semicontinuous differential inclusions on closed sets, Rend. Sem. Mat. Univ. Padova 69 (1983), 99–107.

    MathSciNet  MATH  Google Scholar 

  17. A. Bressan, Upper and lower semicontinuous differential inclusions: a unified approach, to appear in the proceedings of the workshop “Controllability and Optimal Control” held at Rutgers Univ., May 1987; H. Sussman, editor; Marcel-Dekker, publisher.

    Google Scholar 

  18. B. D. Calvert, Semigroups in an ordered Banach space, J. Math. Soc. Japan 23 (1971), 311–319.

    Article  MathSciNet  MATH  Google Scholar 

  19. A. Cambini and S. Querci, Equazioni differenziali del primo ordine con secondo membro discontinuo rispetto all'incognita, Rend. Ist. Mat. Univ. Trieste 1 (1969), 89–97.

    MathSciNet  MATH  Google Scholar 

  20. C. Carathéodory, Vorlesungen uber reele Funktionen, Leipzig, 1927; reprinted, New York, 1948, pp. 665–688.

    Google Scholar 

  21. J. Caristi, Fixed point theorems for mappings satisfying inwardness conditions, Transac. Amer. Math. Soc. 215 (1976), 241–251.

    Article  MathSciNet  MATH  Google Scholar 

  22. P. Chernoff, A note on continuity of semigroups of maps, Proc. Amer. Math. Soc. 53 (1975), 318–320.

    Article  MathSciNet  MATH  Google Scholar 

  23. S.-N. Chow and J.D. Schuur, Fundamental theory of contingent differential equations in Banach space, Transac. Amer. Math. Soc. 179 (1973), 133–144.

    Article  MathSciNet  MATH  Google Scholar 

  24. E. A. Coddington and N. Levinson, Theory of Ordinary Differential Equations, McGraw-Hill Book Co., N.Y., 1955.

    MATH  Google Scholar 

  25. M. G. Crandall, The semigroup approach to first order quasilinear equations in several space variables, Israel J. Math. 12 (1972), 108–132.

    Article  MathSciNet  MATH  Google Scholar 

  26. M. G. Crandall, Nonlinear semigroups and evolution governed by accretive operators, in Nonlinear Functional Analysis and Its Applications (proceedings of the 31st Summer Research Institute of the A.M.S., at the University of California at Berkeley, 1983), ed. by F. Browder, Proc. Sympos. Pure Math. 45, part 1 (1986), 305–337.

    Google Scholar 

  27. M. G. Crandall and T. M. Liggett, Generation of semi-groups of nonlinear transformations on general Banach spaces, Amer. J. Math. 93 (1971), 265–298.

    Article  MathSciNet  MATH  Google Scholar 

  28. M. G. Crandall and A. Pazy, Nonlinear evolution equations in Banach spaces, Israel J. Math. 11 (1972), 57–94.

    Article  MathSciNet  MATH  Google Scholar 

  29. M. G. Crandall and A. Pazy, An approximation of integrable functions by step functions with an application, Proc. Amer. Math. Soc. 76 (1979), 74–80.

    Article  MathSciNet  MATH  Google Scholar 

  30. M. Dawidowski, On some generalization of Bogoliubov averaging theorem, Functiones et Approximatio 7 (1979), 55–70.

    MathSciNet  MATH  Google Scholar 

  31. D. A. Dawson and L. G. Gorostiza, *-solutions of evolution equations in Hilbert space, J. Diff. Eqns. 68 (1987), 299–319.

    Article  MathSciNet  MATH  Google Scholar 

  32. K. Deimling, Ordinary Differential Equations in Banach Spaces, Springer Lecture Notes in Math. 596 (1977), Springer-Verlag, Berlin.

    Google Scholar 

  33. J. Dieudonné, Deux exemples singuliers d'équations différentielles, Acta Sci. Math. (Szeged) 12B (1950), 38–40.

    MATH  Google Scholar 

  34. J. D. Dollard and C. N. Friedman, On strong product integration, J. Func. Anal. 28 (1978), 309–354.

    Article  MathSciNet  MATH  Google Scholar 

  35. N. Dunford and J. T. Schwartz, Linear Operators I, Wiley, N.Y., 1957.

    MATH  Google Scholar 

  36. L. C. Evans, Nonlinear evolutions in an arbitrary Banach space, Israel J. Math. 26 (1977), 1–42.

    Article  MathSciNet  MATH  Google Scholar 

  37. L. C. Evans, Applications of nonlinear semigroup theory to certain partial differential equations, pp.163–188 in: Nonlinear Evolution Equations, proceedings of a symposium held at the Math. Research Center, Univ. of Wisconsin, Madison, Wisconsin, 1977; ed. by M. G. Crandall. Publ. of the Math. Research Center, Univ. of Wisconsin, Madison, no. 40. New York: Academic Press, 1978.

    Google Scholar 

  38. L. C. Evans, Nonlinear semigroup theory and viscosity solutions of Hamilton-Jacobi PDE, pp.63–77 in Nonlinear Semigroups, Partial Differential Equations and Attractors (proc. conference at Howard University, Washington D.C., 1985), ed. by T. L. Gill and W. W. Zachary, Springer Lecture Notes in Mathematics 1248 (1987).

    Google Scholar 

  39. M. A. Freedman, Necessary and sufficient conditions for discontinuous evolutions with applications to Stieltjes integral equations, J. Integral Eqns. 5 (1983), 237–270.

    MathSciNet  MATH  Google Scholar 

  40. M. A. Freedman, Operators of p-variation and the evolution representation problem, Transac. Amer. Math. Soc. 279 (1983), 95–112.

    MathSciNet  MATH  Google Scholar 

  41. M. A. Freedman, Product integrals of continuous resolvents: existence and nonexistence, Israel J. Math. 46 (1983), 145–160.

    Article  MathSciNet  MATH  Google Scholar 

  42. B. M. Garay and J. J. Schäffer, More on uniqueness without continuous dependence in infinite dimension, J. Diff. Eqns. 64 (1986), 48–50.

    Article  MathSciNet  MATH  Google Scholar 

  43. S. Geman, A method of averaging for random differential equations with applications to stability and stochastic approximations, pp.49–85 in Approximate Solution of Random Equations, ed. by A. T. Bharucha-Reid, New York: North-Holland Series in Probability and Applied Math., 1979.

    Google Scholar 

  44. I. I. Gihman, Concerning a theorem of N. N. Bogolyubov, Ukrain. Math. J. 4 (1952), 215–219 (Russian). (For an English summary see Math. Reviews 17, p.738.)

    MathSciNet  Google Scholar 

  45. A. N. Godunov, Peano's theorem in Banach spaces, Funktsional'nyi Analiz i Ego Prilozheniya 9 (1975), 59–60 (Russian.) English translation in: Func. Anal. and its Applic. 9 (1975), 53–55.

    MathSciNet  MATH  Google Scholar 

  46. J. A. Goldstein, Semigroups of Operators and Applications, Oxford Univ. Press, N.Y., and Clarendon Press, Oxford; 1985.

    MATH  Google Scholar 

  47. S. Gutman, Existence theorems for nonlinear evolution equations, Nonlin. Analysis, Theory, Methods, Applicns. 11 (1987), 1193–1206.

    Article  MathSciNet  MATH  Google Scholar 

  48. O. Hájek, Discontinuous differential equations I, J. Diff. Eqns. 32 (1979), 149–170.

    Article  MATH  Google Scholar 

  49. O. Hájek, Discontinuous differential equations II, J. Diff. Eqns. 32 (1979), 171–185.

    Article  MathSciNet  MATH  Google Scholar 

  50. P. Hartman, On invariant sets and on a theorem of Ważewski, Proc. Amer. Math. Soc. 32 (1972), 511–520.

    MathSciNet  MATH  Google Scholar 

  51. P. Hartman, Ordinary Differential Equations, second edition, 1973, reprinted 1982, Birkhäuser Boston.

    Google Scholar 

  52. H.-P. Heinz, On the behaviour of measures of noncompactness with respect to differentiation and integration of vector-valued functions, Nonlinear Anal. 7 (1983), 1351–1371.

    Article  MathSciNet  MATH  Google Scholar 

  53. J. C. Helton, Mutual existence of sum and product integrals, Pacific J. of Math. 56 (1975), 495–516.

    Article  MathSciNet  MATH  Google Scholar 

  54. J. V. Herod, A pairing of a class of evolution systems with a class of generators, Transac. Amer. Math. Soc. 157 (1971), 247–260.

    MathSciNet  MATH  Google Scholar 

  55. J. V. Herod and R. W. McKelvey, A Hille-Yosida theory for evolutions, Israel J. Math. 36 (1980), 13–40.

    Article  MathSciNet  MATH  Google Scholar 

  56. A. Hertzog, Résolution du problème u′(t)-(A + B)(u(t)) ε C(t, u(t)), in Analyse non linéaire, Années 1982 et 1983, Exp. no.1, 32 pp., Publ. Math. Fac. Sci. Basançon, 7, Univ. Franche-Comté, Besançon (1983).

    Google Scholar 

  57. C. J. Himmelberg and F. S. Van Vleck, Existence of solutions for generalized differential equations with unbounded right-hand side, J. Diff. Eqns. 61 (1986), 295–320.

    Article  MathSciNet  MATH  Google Scholar 

  58. D. B. Hinton, A Stieltjes-Volterra integral equation theory, Canad. J. Math. 18 (1966), 314–331.

    Article  MathSciNet  MATH  Google Scholar 

  59. T. Iwamiya, Global existence of solutions to nonautonomous differential equations in Banach spaces, Hiroshima Math. J. 13 (1983), 65–81.

    MathSciNet  MATH  Google Scholar 

  60. T. Iwamiya, S. Oharu, and T. Takahashi, On the class of nonlinear evolution operators in Banach space, Nonlin. Anal. Theory Methods Applicns. 10 (1986), 315–337.

    Article  MathSciNet  MATH  Google Scholar 

  61. T. Iwamiya, S. Oharu, and T. Takahashi, Envelopes of nonlinear semigroups, preprint.

    Google Scholar 

  62. T. Iwamiya, S. Oharu, and T. Takahashi, manuscript in preparation.

    Google Scholar 

  63. J. L. Kaplan and J. A. Yorke, Toward a unification of ordinary differential equations with nonlinear semi-group theory, pages 424–433 in International Conference on Differential Equations (proceedings of a conference at U. Southern California, 1970), ed. by H. A. Antosiewicz; N.Y.: Academic Press, 1975.

    Google Scholar 

  64. T. Kato, Linear evolution equations of “hyperbolic” type, J. Fac. Sci., Univ. Tokyo, Sec.1, vol. 17 (1970), 241–258.

    MathSciNet  MATH  Google Scholar 

  65. T. Kato, Trotter's product formula for an arbitrary pair of selfadjoint contraction semigroups, in: Topics in Functional Analysis, ed. by I. Gohberg and M. Kac; Academic Press, N.Y., 1978.

    Google Scholar 

  66. T. Kato and K. Masuda, Trotter's product formula for nonlinear semigroups generated by the subdifferentials of convex functionals, J. Math. Soc. Japan 30 (1978), 169–178.

    Article  MathSciNet  MATH  Google Scholar 

  67. N. Kenmochi and T. Takahashi, Nonautonomous differential equations in Banach spaces, Nonlin. Anal. 4 (1980), 1109–1121.

    Article  MathSciNet  MATH  Google Scholar 

  68. Y. Kobayashi, Difference approximation of Cauchy problems for quasi-dissipative operators and generation of nonlinear semigroups, J. Math. Soc. Japan 27 (1975), 640–665.

    Article  MathSciNet  MATH  Google Scholar 

  69. M. A. Krasnosel'skii, Positive Solutions of Operator Equations, P. Noordhoff Ltd., The Netherlands, 1964.

    Google Scholar 

  70. T. G. Kurtz and M. Pierre, A counterexample for the Trotter product formula, J. Diff. Eqns. 52 (1984), 407–414.

    Article  MathSciNet  MATH  Google Scholar 

  71. J. Kurzweil, Problems which lead to a generalization of the concept of an ordinary nonlinear differential equation, Differential Equations and Their Applications (Proceedings of a Conference held in Prague, September, 1962), pages 65–76, Academic Press, N.Y., 1963.

    Google Scholar 

  72. V. Lakshmikantham, The method of upper and lower solutions for differential equations in a Banach space, pp.387–391 in: Nonlinear Analysis and Applications, proceedings of a conference held at Memorial Univ. of Newfoundland in St. Johns, June 1981; ed. by S. P. Singh and J. H. Burry; New York: Marcel Dekker, Inc. 1982.

    Google Scholar 

  73. V. Lakshmikantham and S. Leela, Nonlinear Differential Equations in Abstract Spaces, Oxford/New York: Pergamon Press Internat. Series in Nonlin. Math.: Theory, Methods, and Applicns. 2, 1981.

    Google Scholar 

  74. S. Lang, Real Analysis, Addison-Wesley, Reading, Massachusetts, 1969.

    Google Scholar 

  75. M. L. Lapidus, Generalization of the Trotter-Lie formula, Integral Eqns. and Operator Theory 4 (1981), 366–415.

    Article  MathSciNet  MATH  Google Scholar 

  76. T.-Y. Li, Existence of solutions for ordinary differential equations in Banach spaces, J. Diff. Eqns. 18 (1975), 29–40.

    Article  MathSciNet  MATH  Google Scholar 

  77. S. Łojasiewicz, Jr., The existence of solutions for lower semicontiniuous orientor fields, Bull. Acad. Polon. Sér. Sci. Math. 28 (1980), 483–487.

    MATH  Google Scholar 

  78. S. Łojasiewicz, Jr., Some theorems of Scorza-Dragoni type for multifunctions with applications to the problem of existence of solutions for differential multivalued equations, pp.625–643 in: Mathematical Control Theory (16th Semester at the Stefan Banach Internat. Math. Center, 1980); ed. by C. Olech, B. Jakubczyk, and J. Zabczyk; Banach center Publications 14, Polish Academy of Sciences, Warszawa: Polish Scientific Publishers, 1985.

    Google Scholar 

  79. J. S. MacNerney, Integral equations and semigroups, Illinois J. Math. 7 (1963), 148–173.

    MathSciNet  MATH  Google Scholar 

  80. J. Marsden, On product formulas for nonlinear semigroups, J. Funct. Anal. 13 (1973), 51–72.

    Article  MathSciNet  MATH  Google Scholar 

  81. R. H. Martin, Jr., Differential equations on closed subsets of a Banach space, Transac. Amer. Math. Soc. 179 (1973), 399–414.

    Article  MathSciNet  MATH  Google Scholar 

  82. R. H. Martin, Jr., Approximation and existence of solutions to ordinary differential equations in Banach spaces, Funkcialaj Ekvacioj 16 (1973), 195–211.

    MathSciNet  MATH  Google Scholar 

  83. H. Mönch and G.-F. von Harten, On the Cauchy problem for ordinary differential equations in Banach spaces, Arch. Math. 39 (1982), 153–160.

    Article  MathSciNet  Google Scholar 

  84. J. J. Moreau, Evolution problem associated with a moving convex set in a Hilbert space, J. Diff. Eqns. 26 (1977), 347–374.

    Article  MathSciNet  MATH  Google Scholar 

  85. J.J. Moreau, Approximation en graphe d'une évolution discontinue, R. A. I. R. O. Analyse numérique/ Numerical Analysis 12 (1978), 75–84.

    MathSciNet  MATH  Google Scholar 

  86. S. Oharu, A class of nonlinear evolution operators: basic properties and generation theory, in Semigroups, theory and applications, vol. 1, ed. by H. Brezis, M. G. Crandall, and F. Kappel, Pitman Research Notes in Mathematics 141 (1986), 186–196.

    Google Scholar 

  87. C. Olech, An existence theorem for solutions of orientor fields, pp.63–66 in Dynamical Systems, an International Symposium, vol. 2; ed. by L. Cesari, J.K. Hale, and J.P. LaSalle; New York: Academic Press (1976).

    Google Scholar 

  88. N. H. Pavel, Nonlinear evolution equations governed by f-quasi-dissipative operators, Nonlin. Anal. 5 (1981), 449–468.

    Article  MathSciNet  MATH  Google Scholar 

  89. N. H. Pavel, Nonlinear evolution operators and semigroups; applications to partial differential equations, Berlin-New York: Springer-Verlag Lecture Notes in Math. 1260 (1987).

    MATH  Google Scholar 

  90. G. Peano, Sull'integrabilita delle equazioni differenziali di primo ordine, Accad. Sci. Torino 21 (1885), 677–685.

    MATH  Google Scholar 

  91. G. Pianigiani, Existence of solutions for ordinary differential equations in Banach spaces, Bull. Acad. Polon. Sci., Sér. sci. math. astron. phys. 23 (1975), 853–857.

    MathSciNet  MATH  Google Scholar 

  92. C. Picard, Opérateurs φ-accrétifs et génération de semi-groupes non linéaires, C. R. Acad. Sci. Paris 275A (1972), 639–641.

    MATH  Google Scholar 

  93. M. Pierre, Enveloppe d'une famille de semi-groupes non linéaires et équations d'évolution, Seminaire d'analyse non linéaire, Univérsité Besançon, 1976–77.

    Google Scholar 

  94. M. Pierre, Enveloppe d'une famille de semi-groupes dans un espace de Banach, C. R. Acad. Sci. Paris 284A (1977), 401–404.

    MathSciNet  MATH  Google Scholar 

  95. M. Pierre, Invariant closed subsets for nonlinear semigroups, Nonlin. Anal. 2 (1978), 107–111.

    Article  MathSciNet  MATH  Google Scholar 

  96. M. Pierre and M. Rihani, About product formulas with variable step-size, University of Wisconsin at Madison: Math. Research Ctr. Tech. Summary Report 2783 (1984).

    Google Scholar 

  97. G. H. Pimbley, A semigroup for Lagrangian one-dimensional isentropic flow, preprint.

    Google Scholar 

  98. A. Pucci, Sistemi di equazioni differenziali con secondo membro discontinuo rispetto all'incognita, Rend. Ist. Mat. Univ. Trieste 3 (1971), 75–80.

    MathSciNet  MATH  Google Scholar 

  99. R. M. Redheffer, The theorems of Bony and Brézis on flow-invariant sets, Amer. Math. Monthly 79 (1972), 740–747.

    Article  MathSciNet  MATH  Google Scholar 

  100. S. Reich, Approximate selections, best approximations, fixed points, and invariant sets, J. Math. Anal. Applic. 62 (1978), 104–113.

    Article  MathSciNet  MATH  Google Scholar 

  101. S. Reich, Product formulas, nonlinear semigroups, and accretive operators, J. Functional Anal. 36 (1980), 147–168.

    Article  MathSciNet  MATH  Google Scholar 

  102. S. Reich, Convergence and approximation of nonlinear semigroups, J. Math. Anal. Applic. 76 (1980), 77–83.

    Article  MathSciNet  MATH  Google Scholar 

  103. B. Rzepecki, On measures of noncompactness in topological vector spaces, Comment. Math. Univ. Carolin. 23 (1982), 105–116.

    MathSciNet  MATH  Google Scholar 

  104. M. Samimi and V. Lakshmikantham, General uniqueness criteria for ordinary differential equations, Appl. Math. and Comput. 12 (1983), 77–88.

    MathSciNet  MATH  Google Scholar 

  105. S. H. Saperstone, Semidynamical Systems in Infinite Dimensional Spaces, Applied Mathematical Sciences 37, New York: Springer-Verlag, 1981.

    MATH  Google Scholar 

  106. D. H. Sattinger, Monotone methods in nonlinear elliptic and parabolic boundary value problems, Indiana Univ. Math. J. 21 (1972), 979–1000.

    Article  MathSciNet  MATH  Google Scholar 

  107. E. Schechter, One-sided continuous dependence of maximal solutions, J. Diff. Eqns. 39 (1981), 413–425.

    Article  MathSciNet  MATH  Google Scholar 

  108. E. Schechter, Existence and limits of Carathéodory-Marin evolutions, Nonlin. Anal. 5 (1981), 897–930.

    Article  MathSciNet  MATH  Google Scholar 

  109. E. Schechter, Interpolation of nonlinear partial differential operators and generation of differentiable evolutions, J. Diff. Eqns. 46 (1982), 78–102.

    Article  MathSciNet  MATH  Google Scholar 

  110. E. Schechter, Necessary and sufficient conditions for convergence of temporally irregular evolutions, Nonlin. Analysis Theory Methods Applicns. 8 (1984), 133–153.

    Article  MathSciNet  MATH  Google Scholar 

  111. E. Schechter, Sharp convergence rates for nonlinear product formulas, Mathematics of Computation 43 (1984), 135–155.

    Article  MathSciNet  MATH  Google Scholar 

  112. E. Schechter, Compact perturbations of linear m-dissipative operators which lack Gihman's property, in Nonlinear Semigroups, Partial Differential Equations and Attractors (proc. conference at Howard University, Washington D.C., 1985), ed. by T. L. Gill and W. W. Zachary, Springer Lecture Notes in Mathematics 1248 (1987), 142–161.

    Google Scholar 

  113. S. Schmidt, Zwei Existenzsätze für gewöhnliche Differentialgleichungen, preprint.

    Google Scholar 

  114. S. Schwabik, Stetige Abhängigkeit von einem Parameter für ein Differentialgleichungssystem mit Impulsen, Czech. Math. J. 21 (1971), 198–212. (Math. Reviews 44 no. 7019.)

    MathSciNet  MATH  Google Scholar 

  115. S. Schwabik, On a modified sum integral of Stieltjes type, Časopis Pěst. Mat. 98 (1973), 274–277.

    MathSciNet  MATH  Google Scholar 

  116. D. R. Smart, Fixed points, Cambridge Tracts in Math. 66 (1974), Cambridge U. Press, Cambridge.

    Google Scholar 

  117. G. I. Stassinopoulos and R. B. Vinter, Continuous dependence of solutions of a differential inclusion on the right hand side with applications to stability of optimal control problems, SIAM J. on Control and Applicns. 17 (1979), 432–449.

    Article  MathSciNet  MATH  Google Scholar 

  118. V. Ya. Stecenko, K-regular cones, Dokl. Akad. Nauk SSSR 136 (1961), 1038–1040 (Russian); translated as Soviet Math. Dokl. 2 (1961), 170–172.

    MathSciNet  Google Scholar 

  119. S. Szufla, Measure of non-compactness and ordinary differential equations in Banach spaces, Bull. Acad. Polon. Sci., Sér. sci. math. astrono. phys. 19 (1971), 831–835.

    MathSciNet  MATH  Google Scholar 

  120. T. Takahashi, Semigroups of nonlinear operators and invariant sets, Hiroshima Math. J. 10 (1980), 55–67.

    MathSciNet  MATH  Google Scholar 

  121. A. A. Tolstonogov, On differential inclusions in Banach spaces and continuous selections, Dokl. Akad. Nauk. CCCP 244 (1979), 1088–1092. (Russian). Translated to English in Soviet Math. Dokl. 20 (1979), 186–190.

    MathSciNet  MATH  Google Scholar 

  122. C. Vârsan, Continuous dependence and time change for Ito equations, J. Diff. Eqns. 58 (1985), 295–306.

    Article  MathSciNet  MATH  Google Scholar 

  123. P. Volkmann, Equations différentielles ordinaires dans les espaces des fonctions bornées, Czech. Math. J. 35 (1985), 201–211.

    MATH  Google Scholar 

  124. P. Volkmann, Existenzsätze für gewöhnliche Differentialgleichungen in Banachräumen, pages 271–287 in Mathematica ad diem natalem septuagesium quintum data: Festschrift Ernst Mohr zum 75. Geburtstag am 20. April, 1985, ed. by K.-H. Förster. Universitätsbibliothek, Berlin, 1985.

    Google Scholar 

  125. I. I. Vrabie, Compact perturbations of weakly equicontinuous semigroups, pages 267–277 in Differential Equations in Banach Spaces (Proceedings of a Conference Held in Bologna, 1985), ed. by A. Favini and E. Obrecht; Springer Lecture Notes in Mathematics 1223 (1986).

    Google Scholar 

  126. G. F. Webb and M. Badii, Nonlinear nonautonomous functional differential equations in L p spaces, Nonlin. Anal. 5 (1981), 203–223.

    Article  MathSciNet  MATH  Google Scholar 

  127. D. V. V. Wend, Existence and uniqueness of solutions of ordinary differential equations, Proc. Amer. Math. Soc. 23 (1969), 27–33.

    Article  MathSciNet  MATH  Google Scholar 

  128. N. Wiener, The quadratic variation of a function and its Fourier coefficients, J. Math. Phys. Sci. 3 (1924), 73–94.

    MATH  Google Scholar 

  129. K. Yosida, Functional Analysis, Springer-Verlag, Berlin, first and later editions, 1964 and later.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Tepper L. Gill Woodford William Zachary

Rights and permissions

Reprints and permissions

Copyright information

© 1989 Springer-Verlag

About this paper

Cite this paper

Schechter, E. (1989). A survey of local existence theories for abstract nonlinear initial value problems. In: Gill, T.L., Zachary, W.W. (eds) Nonlinear Semigroups, Partial Differential Equations and Attractors. Lecture Notes in Mathematics, vol 1394. Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0086759

Download citation

  • DOI: https://doi.org/10.1007/BFb0086759

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-51594-4

  • Online ISBN: 978-3-540-46679-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics