Skip to main content

Additive noise turns a hyperbolic fixed point into a stationary solution

  • Chapter 2: Nonlinear Random Dynamical Systems
  • Conference paper
  • First Online:
Lyapunov Exponents

Part of the book series: Lecture Notes in Mathematics ((LNM,volume 1486))

Abstract

Suppose (*)Ȧ=A(v t w)x is hyperbolic, i.e. all of its Lyapunov exponents are different from zero. Then Ȧ=A(v t w)x+f(v t w,x)+b(v t w) with f(w,·) locally Lipschitz and f(w,0)=0 has a (unique) stationary solution in a neighborhood of x=0 provided f and b are ‘small’. ‘Smallness’ in being described in terms of a random norm measuring the non-uniformity of the hyperbolicity of (*).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 52.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Arnold, L. and H. Crauel: Iterated function systems and multiplicative ergodic theory. M. Pinsky, V. Wihstutz (eds): Stochastic flows. Birkhäuser 1991.

    Google Scholar 

  2. Boxler, P.: A stochastic version of center manifold theory. Probab. Th. Rel. Fields 83, 509–545 (1989).

    Article  MathSciNet  MATH  Google Scholar 

  3. Bunke, H.: Gewöhnliche Differentialgleichungen mit zufälligen Parametern. Akademie-Verlag, Berlin 1972.

    MATH  Google Scholar 

  4. Coppel, W.A.: Stability and asymptotic behaviour of differential equations. Heath, Boston 1965.

    MATH  Google Scholar 

  5. Hale, J.K.: Ordinary differential equations. Wiley, New York 1969.

    MATH  Google Scholar 

  6. Hasminskii, R.Z.: Stochastic stability of differential equations. Sijthoff and Noordhoff, Alphen 1980.

    Book  Google Scholar 

  7. Meyer, K.R. and G.R. Sell: Melnikov transforms, Bernoulli bundles, and almost periodic perturbations. Trans. Amer. Math. Soc. 314, 63–105 (1989).

    MathSciNet  MATH  Google Scholar 

  8. Palmer, K.: Exponential dichotomies, the shadowing lemma and transversal homoclinic points. Dynamics Reported, Vol. 1. Wiley, New York 1988, 265–306.

    MATH  Google Scholar 

  9. Scheurle, J.: Chaotic solutions of systems with almost periodic forcing. J. Applied Math. and Phys. (ZAMP) 37, 12–26 (1986).

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Ludwig Arnold Hans Crauel Jean-Pierre Eckmann

Rights and permissions

Reprints and permissions

Copyright information

© 1991 Springer-Verlag

About this paper

Cite this paper

Arnold, L., Boxler, P. (1991). Additive noise turns a hyperbolic fixed point into a stationary solution. In: Arnold, L., Crauel, H., Eckmann, JP. (eds) Lyapunov Exponents. Lecture Notes in Mathematics, vol 1486. Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0086665

Download citation

  • DOI: https://doi.org/10.1007/BFb0086665

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-54662-7

  • Online ISBN: 978-3-540-46431-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics