Number Theory pp 120-136 | Cite as

Mean value estimates for exponential sums

  • M. Jutila
Conference paper
Part of the Lecture Notes in Mathematics book series (LNM, volume 1380)


Fourier Coefficient Cusp Form Dirichlet Series Partial Summation Dirichlet Polynomial 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    E. Bombieri and H. Iwaniec, On the order of ζ(1/2+it), Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 13 (1986), 449–472MathSciNetzbMATHGoogle Scholar
  2. [2]
    A. Good, The square mean of Dirichlet series associated with cusp forms, Mathematika 29 (1982), 278–295.MathSciNetCrossRefzbMATHGoogle Scholar
  3. [3]
    M. N. Huxley and N. Watt, Exponential sums and the Riemann zeta function, Proc. London Math. Soc. (3) 57 (1988), 1–24.MathSciNetCrossRefzbMATHGoogle Scholar
  4. [4]
    A. Ivić, "The Riemann zeta-function", John Wiley & Sons, New York, 1985.zbMATHGoogle Scholar
  5. [5]
    H. Iwaniec, Fourier coefficients of cusp forms and the Riemann zeta-function, Séminaire de Théorie des Nombres, Univ. Bordeaux 1979/80, exposé no 18, 36 pp.Google Scholar
  6. [6]
    M. Jutila, On the divisor problem for short intervals, Ann. Univ. Turkuensis Ser. A I 186 (1984), 23–30.MathSciNetzbMATHGoogle Scholar
  7. [7]
    M. Jutila, The fourth power moment of the Riemann zeta-function over a short interval, Proc. Coll. Soc. János Bolyai, Coll. on Number Theory (Budapest 1987), North Holland, Amsterdam (to appear).Google Scholar
  8. [8]
    M. Jutila, "Lectures on a method in the theory of exponential sums", Tata Institute of Fundamental Research, Lectures on Mathematics and Physics vol. 80, Bombay, 1987.Google Scholar
  9. [9]
    H. L. Montgomery, "Topics in Multiplicative Number Theory", Lecture Notes in Mathematics vol. 227, Springer-Verlag, Berlin-Heidelberg-New York, 1971.zbMATHGoogle Scholar

Copyright information

© Springer-Verlag 1989

Authors and Affiliations

  • M. Jutila
    • 1
  1. 1.Department of MathematicsUniversity of TurkuTurkuFinland

Personalised recommendations