Partitions into parts which are unequal and large

  • P. Erdös
  • M. Szalay
  • J. L. Nicolas
Conference paper
Part of the Lecture Notes in Mathematics book series (LNM, volume 1380)


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [Dix]
    J. DIXMIER et J.L. NICOLAS, Partitions sans petits sommants, preprint of I.H.E.S. may 1987, to be published in the proceedings of the colloquium in number theory, Budapest, July 1987.Google Scholar
  2. [Erd]
    P. ERDÖS and M. SZALAY, On the statistical theory of partitions; in: Coll. Math. Soc. Jànos Bolyai 34. Topics in Classical Number Theory (Budapest, 1981), pp. 397–450, North-Holland/Elsevier.Google Scholar
  3. [Har]
    G.H. HARDY and S. RAMANUJAN, Asymptotic formulae in combinatory analysis, Proc. London Math. Soc. (2) 17 (1981), pp. 75–115. (Also in Collected Papers of S. Ramanujan, pp. 276–309. Cambridge Univ. Press., Cambridge, 1927; reprinted by Chelsea, New York, 1962).MathSciNetzbMATHGoogle Scholar
  4. [Her]
    J. HERZOG, Gleichmässige asymptotische Formeln für parameterabhängige Partitionenfunktionen, Thesis, University J. W. Goethe, Frankfurt am Main, 1987.zbMATHGoogle Scholar
  5. [Hua]
    L. K. HUA, On the number of partitions of a number into unequal parts, Trans. Amer. Math. Soc. 51 (1942), pp. 194–201.MathSciNetCrossRefzbMATHGoogle Scholar
  6. [Wat]
    G.N. WATSON, A treatise on the theory of Bessel functions, Cambridge, at the University Press, 1962.Google Scholar

Copyright information

© Springer-Verlag 1989

Authors and Affiliations

  • P. Erdös
    • 1
  • M. Szalay
    • 2
  • J. L. Nicolas
    • 3
  1. 1.Mathematical Institute of the Hungarian Academy of SciencesBudapestHungary
  2. 2.Department of Algebra and Number TheoryEötvös Lorànd UniversityBudapestHungary
  3. 3.Département de MathématiquesUniversité de LimogesLimoges cédexFrance

Personalised recommendations