Advertisement

Applications of Cayley-Chow forms

  • W. Dale Brownawell
Conference paper
Part of the Lecture Notes in Mathematics book series (LNM, volume 1380)

Keywords

Prime Ideal Principal Ideal Common Zero Diophantine Approximation Springer Lecture Note 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Bibliography

  1. [BB]
    Bertrand, D. and Beukers, F. Equations differentielles et majorations de multiplicités, Ann. Sci. Ecole Norm. Sup. 18 1985, 181–192.MathSciNetzbMATHGoogle Scholar
  2. [BM]
    Brownawell, W.D. and Masser, D.W. Multiplicity estimates for analytic functions II, Duke Math J. 47 (1980), 273–295.MathSciNetCrossRefzbMATHGoogle Scholar
  3. [B1]
    Brownawell, W.D. Sequences of Diophantine approximations, J. Number Th. 6(1974), 11–21.MathSciNetCrossRefzbMATHGoogle Scholar
  4. [B2]
    —, Bounds on the degree in the Nullstellensatz, Annals of Math., 126 (1987), 577–591.MathSciNetCrossRefzbMATHGoogle Scholar
  5. [B3]
    —. Borne effective pour l'exposant dans le théorème des zéros, C. R. Acad. Sci. Paris, Sér. I., 305 (1987), 287–290.MathSciNetzbMATHGoogle Scholar
  6. [B4]
    —. Aspects of the Hilbert Nullstellensatz, in New Advances in Transcendence, A. Baker, ed, Cambridge University Press, Cambridge, to appear.Google Scholar
  7. [B5]
    —. Local Diophantine Nullstellen inequalities, J. Am. Math. Soc., to appear.Google Scholar
  8. [B6]
    —. Large transcendence degree revisited I. Exponential and CM cases, in Bonn Workshop on Transcendence, G. Wüstholz, ed, Springer Lecture Notes, to appear.Google Scholar
  9. [B7]
    —. Note on a paper of P. Philippon, Mich. Math. J., in press.Google Scholar
  10. [BT]
    Brownawell, W.D. and Tubbs, R. Large transcendence revisited II. The CM case, in Bonn Workshop on Transcendence, G. Wüstholz, ed, Springer Lecture Notes, to appear.Google Scholar
  11. [Ca]
    Cassels, J.W.S. An Introduction to Diophantine Approximation, Cambridge University Press, Cambridge, 1957.zbMATHGoogle Scholar
  12. [C]
    Chudnovsky, G.V. Some analytic methods in the theory of transcendental numbers, Inst. of Math., Ukr. SSR Acad. Sci., Preprint IM 74-8 and IM 74-9, Kiev, 1974 = Chapter 1 in Contributions to the Theory of Transcendental Numbers, Am. Math. Soc., Providence, R.I. 1984.Google Scholar
  13. [D]
    Diaz, G. Grands degrés de transcendance pour des familles d'exponentielles, C. R. Acad. Sci. Paris 305(1987), 159–162.MathSciNetzbMATHGoogle Scholar
  14. [G]
    Gelfond, A.O. Transcendental and Algebraic Numbers, GITTL Moscow 1952 = Dover, New York, 1960.zbMATHGoogle Scholar
  15. [J]
    Jabbouri, E.M. Mesures d'indépendance algébriques sur les groupes algébriques commutatifs, manuscript.Google Scholar
  16. [MW]
    Masser, D.W. and Wüstholz, G. Fields of large transcendence degree generated by values of elliptic functions, Invent. Math. 72 (1983), 407–463.MathSciNetCrossRefzbMATHGoogle Scholar
  17. [N1]
    Nesterenko, Yu.V. On the algebraic dependence of the components of solutions of a system of linear differential equations, Izv. Akad. Nauk SSR Ser. Mat. 38 (1974), 495–512 = Math. UsSR Izv. 8 (1974), 501–518.MathSciNetzbMATHGoogle Scholar
  18. [N2]
    —. Estimates for the orders of zeros of functions of a certain class and applications in the theory of transcendental numbers, Izv. Akad. Nauk SSSR Ser. Mat. 41 (1977), 253–284 = Math. USSR Izv. 11 (1977), 239–270.MathSciNetzbMATHGoogle Scholar
  19. [N3]
    —. Bounds for the characteristic function of a prime ideal, Mat. Sbornik 123, No. 1 (1984), 11–34 = Math. USSR Sbornik 51 (1985), 9–32.MathSciNetGoogle Scholar
  20. [N4]
    —. On algebraic independence of algebraic powers of algebraic numbers, Mat. Sbornik 123, No. 4 (1984), 435–459 = Math. USSR Sbornik 51 (1985), 429–454, brief version in Approximations Diophantiennes et Nombres Transcendants, D. Bertrand and M. Waldschmidt, eds, Birkhäuser Verlag, Verlag, Boston-Basel-Stuttgart, 1983, pp. 199–220.MathSciNetzbMATHGoogle Scholar
  21. [N5]
    —. On a measure of the algebraic independence of the values of some functions, Mat. Sbornik 128, No. 4 (1985), 545–568 = Math USSR Sbornik 56 (1986), 545–567.MathSciNetzbMATHGoogle Scholar
  22. [N6]
    —. On bounds of measures of algebraically independent numbers, pp. 65–76 in Diophantine Approximations, P.L. Ulnova, ed., Moscow Univ. Press, Moscow, 1985 (Russian).Google Scholar
  23. [N7]
    —. On a measure of algebraic independence of values of the exponential function, Doklady Akad. Nauk SSSR 286, No. 4, 1986, 817–821 = Soviet Math. Doklady 33 (1986), 20–203.MathSciNetGoogle Scholar
  24. [N8]
    —. On a measure of algebraic independence of values of elliptic functions at algebraic points, Uspehi Mat. Nauk 40 (1985), 221–222 = Russian Math. Surveys 40, No. 4, 1985, 237–238.MathSciNetGoogle Scholar
  25. [N9]
    —. Measures of algebraic independence of numbers and functions, pp 141–149 in Journées Arithmétiques de Besancon, Asterisque, Vol. 147–148, Soc. Math. France, Paris, 1987.Google Scholar
  26. [O]
    Osgood, C.F. Nearly perfect systmes and effective generalizations of Shidlovski's theorem, J. Number Th. 13 (1981), 515–540.MathSciNetCrossRefzbMATHGoogle Scholar
  27. [P1]
    Philippon, P. Indépendance algébrique de valeurs des fonctions exponentielles p-adiques, J. reine angew. Math. 329 (1981), 42–51.MathSciNetzbMATHGoogle Scholar
  28. [P2]
    —. Pour une théorie de l'indépendance algébrique, Thèse, Université de Paris XI, 1983.Google Scholar
  29. [P3]
    —. Sur les mesures d'indépendance algébrique, pp. 219–233 in Seminaire de Theorie des Nombres, Catherine Goldstein, ed, Birkhäuser, Boston-Basel-Stuttgart, 1985.Google Scholar
  30. [P4]
    —. Critères pour l'indépendance algébrique, Inst. Hautes Etudes Sci. Publ. Math. No. 64, 1986, 5–52.Google Scholar
  31. [P5]
    —. Lemmes de zéros dans les groupes algébriques commutatifs, Bull. Soc. Math. France. 114 (1986), 355=383.MathSciNetzbMATHGoogle Scholar
  32. [P6]
    —. Elimination effective, Chap. XXVIII in Journées Algorithmiques-Arithmétiques, Univ. St. Etienne, 1983.Google Scholar
  33. [Sh]
    Shidlovsky, A.B. Transcendental Numbers, Nauka, Moscow 1987 (in Russian).Google Scholar
  34. [S]
    Skoda, H. Applications des techniques L2 à la théorie des idéaux algèbre de fonctions holomorphes avec poids, Ann. Sci. Ecole Norm. Sup. 5 (1972), 545–579.MathSciNetzbMATHGoogle Scholar
  35. [Tij]
    Tijdeman, R. On the number of zeros of general exponential polynomials, Indag. Math. 33 (1971), 1–7.MathSciNetCrossRefzbMATHGoogle Scholar
  36. [VdW]
    Van der Waerden, B.L. Zur algebraischen Geometrie 19, Grundpolynom und zugeordnete Form, Math. Ann. 136(1958), 139–155.MathSciNetCrossRefzbMATHGoogle Scholar
  37. [W1]
    Waldschmidt, M. Algebraic independence of transcendental numbers. Gel'fond's method and its developments, pp. 551–571, in Perspectives in Mathematics, Anniversary of Oberwolfach, W. Jager, J. Moser, R. Remmert, eds, Birkhäuser Verlag, Boston-Basel-Stuttgart, 1984.Google Scholar
  38. [W2]
    —. Algebraic independence of values of exponential and elliptic functions, J. Indian Math. Soc. 48 (1984), 215–228.MathSciNetzbMATHGoogle Scholar
  39. [W3]
    —. Groupes algébriques et grands degrés de transcendance, Acta Math. 156 (1986), 253–302.MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer-Verlag 1989

Authors and Affiliations

  • W. Dale Brownawell
    • 1
  1. 1.Department of MathematicsPenn State UniversityUniversity ParkUSA

Personalised recommendations