Skip to main content

Non-orientable and orientable regular maps

  • Conference paper
  • First Online:
Groups — Korea 1988

Part of the book series: Lecture Notes in Mathematics ((LNM,volume 1398))

Abstract

There do exist quite a lot of papers investigating regular maps on connected compact 2-manifolds, in the orientable case as well as in the non-orientable case (see the References). We want to bring about some new aspects, which also lead to interesting applications.

It is well known that the closed orientable surface of characteristic 2x is a regular two-fold cover of the closed non-orientable surface of characteristic x. Thus, every non-orientable regular (i.e. flag-transitive) map of genus h induces an orientable regular map of genus g=h − 1. But not every orientable map is induced, and different non-orientable regular maps can induce the same orientable map. We study this relation more closely and give several criteria by which one can easily get a classification of the non-orientable regular maps of genus h, if the list of the orientable ones of genus g is known. We construct all non-orientable regular maps having less than 6 faces.

Our and earlier results indicate that the orientable case seems to admit in a certain sense much more regular maps than the non-orientable case. This becomes plausible, if we take into consideration the crystallographic aspect. The group of the map (or a factor group) acts as a Euclidean crystallographic point group on a 2g- or (h − 1)-dimensional Z-lattice, if the genus is g or h, respectively. So the crystallographic restrictions are stronger in the non-orientable case.

Apart from the standard abelianizing procedure we can construct in the non-orientable case a normal subgroup N** of the group of the universal tessellation, yielding the Z-lattice and giving a new method for proving certain groups to be infinite. We illustrate this by showing that the infiniteness of the group (2,3,7;9) — which was proved by C.C. Sims [20] and J. Leech [16], [17] — is an immediate consequence of our results, as well as the new informations that (2,3,7;13) and (2,3,7;15) are infinite. (In fact: Using earlier findings of the second author, one can prove further new results on the groups G p,q,r and (l,m,n;q)). A more general and systematic exposition of our method will be given in a forthcoming publication [1].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 29.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 39.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. P. Bergau and D. Garbe, ‘Kleinian surfaces and proving groups infinite', to appear.

    Google Scholar 

  2. H.R. Brahana, ‘Regular maps and their groups', Amer. J. Math. 49 (1927), 268–284.

    Article  MathSciNet  MATH  Google Scholar 

  3. H.S.M. Coxeter, ‘Configurations and maps', Rep. Math. Colloq. (2) 8(1948), 18–38.

    MathSciNet  MATH  Google Scholar 

  4. H.S.M. Coxeter, ‘The abstract group G 3,7,16', Proc. Edinb. Math. Soc. (2) 13(1962), 47–61.

    Article  MathSciNet  MATH  Google Scholar 

  5. H.S.M. Coxeter and W.O.J. Moser, Generators and relators for discrete groups, 4th ed. Berlin 1980.

    Google Scholar 

  6. A. Dress, ‘On the classification and generation of two-and higher-dimensional regular patterns', Match 9(1980), 73–80.

    MathSciNet  Google Scholar 

  7. W.V. Dyck, ‘Gruppentheoretische Studien', Math. Ann. 20(1882), 1–45.

    Article  MathSciNet  MATH  Google Scholar 

  8. V.A. Efremovic, ‘Regular polyhedra', (in Russian), Dokl. Akad. Nauk SSR 57(1947), 223–226.

    MathSciNet  Google Scholar 

  9. R. Fricke and F. Klein, ‘Vorlesungen über die Theorie der automorphen Funktionen', Band I. Leipzig (1897).

    Google Scholar 

  10. D. Garbe, ‘Ueber die regulaeren Zerlegungen geschlossener orientierbarer Flaechen', J. reine angew Math. 237(1969), 39–55.

    MathSciNet  MATH  Google Scholar 

  11. D. Garbe, ‘Ueber eine Klasse von arithmetisch definierbaren Normalteilern der Modulgruppe', Math. Ann. 235(1978), 195–215.

    Article  MathSciNet  MATH  Google Scholar 

  12. D. Garbe, ‘A remark on non-symmetric Riemann surfaces', Arch. d. Math. 30(1978), 435–437.

    Article  MathSciNet  MATH  Google Scholar 

  13. A.S. Grek, ‘Regular polyhedra of simplest hyperbolic type', (in Russian), Ivano. Gos. Ped. Inst. Ucen. Zap. 34(1963), 27–30.

    MathSciNet  Google Scholar 

  14. A.S. Grek, ‘Regular polyhedra on surfaces of Euler characteristic x=−4', (in Russian), Soobsc. Akad. Nauk SSR 42(1966), 11–15.

    MathSciNet  MATH  Google Scholar 

  15. A.S. Grek, ‘Regular polyhedra on a closed surface whose Euler characteristic is x=−3', AMS Transl. 78(1968), 127–131.

    MATH  Google Scholar 

  16. J. Leech, ‘Generators for certain normal subgroups of (2,3,7).’ Proc. Camb. Phil. Soc. 61(1965), 321–332.

    Article  MathSciNet  MATH  Google Scholar 

  17. J. Leech, ‘Note on the abstract group (2,3,7;9)', Proc. Camb. Phil. Soc. 62(1966), 7–10.

    Article  MathSciNet  MATH  Google Scholar 

  18. J. Scherwa, Regulaere Karten geschlossener nichtorientierbarer Flaechen, Diplom-Thesis, Bielefeld 1985.

    Google Scholar 

  19. F.A. Sherk, ‘The regular maps on a surface of genus three', Canad. J. Math. 11(1959), 452–480.

    Article  MathSciNet  MATH  Google Scholar 

  20. C.C. Sims, ‘On the group (2,3,7;9)', Notices Amer. Math. Soc. 11(1964), 687–688.

    Google Scholar 

  21. W. Threlfall, ‘Gruppenbilder', Abh. Saechs. Akad. Wiss. Math.-Phys. Kl. 41(1932), 1–59.

    MATH  Google Scholar 

  22. H.C. Wilkie, ‘On non-Euclidean crystallographic groups', Math. Zeitschr. 91(1966), 87–102.

    Article  MathSciNet  MATH  Google Scholar 

  23. J.M. Wills, Polyhedra in the style of Leonardo, Dali and Escher, M.C. Escher: Art a. Science. ed. H.S.M. Coxeter et al. Amsterd. 1986.

    Google Scholar 

  24. S. Wilson, ‘Riemann surfaces over regular maps', Can. J. Math. 30(1978). 763–782.

    Article  MathSciNet  MATH  Google Scholar 

  25. H. Zassenhaus, ‘Ueber einen Algorithmus zur Bestimmung der Raumgruppen', Comment. Math. Helvet. 21(1948), 117–141.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Ann Chi Kim Bernhard H. Neumann

Rights and permissions

Reprints and permissions

Copyright information

© 1989 Springer-Verlag

About this paper

Cite this paper

Bergau, P., Garbe, D. (1989). Non-orientable and orientable regular maps. In: Kim, A.C., Neumann, B.H. (eds) Groups — Korea 1988. Lecture Notes in Mathematics, vol 1398. Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0086237

Download citation

  • DOI: https://doi.org/10.1007/BFb0086237

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-51695-8

  • Online ISBN: 978-3-540-46756-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics