Skip to main content

Compressible countercurrent flow in a strongly rotating cylinder

  • Conference paper
  • First Online:
Singular Perturbations and Boundary Layer Theory

Part of the book series: Lecture Notes in Mathematics ((LNM,volume 594))

Abstract

The motion of a compressible viscous gas in a rapidly rotating cylinder closed at both ends is investigated by the linear theory. The rigid rotation state is perturbed slightly by source or sinks and by thermal gradients. The method of matched asymptotic expansions is used to find uniform solutions in powers of the Ekman number. In the Stewartson 1/3 layer along the side wall, the Ekman number ε at power 1/3 is taken of the same order of magnitude as the inverse of the square Mach number M; this allows to take correctly into account the radial compressibility effect, contrary to previous works. This method is also applied to detached layers and to Stewartson 1/4 layers with ε 1/4 M 2 = 0 (1). The pattern of the flow in these layers is strongly altered as compared to incompressible case.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 44.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 59.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. GREENSPAN, HP, Theory of rotating fluids, 1968, Cambridge University Press.

    Google Scholar 

  2. BARCILON, V and PEDLOVSKY, J, On the steady motions produced by a stable stratification in a rapidly rotating fluid, J. Fluid. Mech. 1967, 29, 673–690.

    Article  MATH  Google Scholar 

  3. HUNTER, C, The axisymmetric flow in a rotating annulus due to horizontally applied temperature gradient. J. Fluid. Mech, 1968, 27, 753–778.

    Article  MATH  Google Scholar 

  4. HOMSY, G.M., and HUDSON, J.L., Centrifugally driven thermal convection in a rotating cylinder, J. Fluid Mechanics, 1969, 35, 33–52.

    Article  MATH  Google Scholar 

  5. SAKURAI, T and MATSUDA, T, Gas dynamics of a centrifugal machine, J. Fluid Mechanics, 1974, 62, 727–736.

    Article  MATH  Google Scholar 

  6. NAKAYAMA, W and USUI, S, Flow in rotating cylinder of a gas centrifuge, J. Nucl. Sci. Tech. 1974, 11, 242–262.

    Article  Google Scholar 

  7. DURIVAULT, J and LOUVET, P, Etude théorique de l'écoulement dans une centrifugeuse à contrecourant thermique, 1975, Rapport CEA-R-4714.

    Google Scholar 

  8. STEWARTSON, K, On almost rigid rotations, J. Fluid Mechanics, 1957, 8, 17–26.

    Article  MathSciNet  MATH  Google Scholar 

  9. MATSUDA, T, SAKURAI, T and TAKEDA, H, Source-sink flow in a gas centrifuge J. Fluid Mechanics, 1975, 69, 197–208.

    Article  MATH  Google Scholar 

  10. LOTZ, M. Kompressible Ekman-Grenzschichten in rotierenden Zylindern, Atomkernenergie, 1973, 22, 46–50.

    Google Scholar 

  11. BENNETTS, D, A and HOCKING, L, M, On non linear Stewartson layers in a rotating fluid, Proc. R. Soc. Lond., 1973, A 333, 469–489.

    Article  MATH  Google Scholar 

  12. DURIVAULT, J, LOUVET, P, ROUVILLOIS, G, and SOUBBARAMAYER, Int. J. Heat and Mass Transfert, to be published (also communication to Euromech 80, Karlsruhe, 1976).

    Google Scholar 

  13. DARROZES, J-S, The method of matched asymptotic expansions applied to problems involving two singular perturbation parameters, Fluid Dynamics transactions, 1972, 6, part. II, 119.

    MathSciNet  Google Scholar 

  14. DURIVAULT, J, LOUVET, P, Etude de la couche de Stewartson compressible dans une centrifugeuse à contrecourant thermique, C.R. Acad. Sc., séance du 10 mai 1976, série B, t 283, 79–82.

    Google Scholar 

  15. LOUVET, P, and DURIVAULT, J, Compressible countercurrent flow in a centrifuge communication to Euromech 80, Karlsruhe (1976).

    Google Scholar 

  16. BAKER, G, A, Essentials of Pade Approximants, Academic Press, New-York, 1975.

    MATH  Google Scholar 

  17. BARK, FH, and BARK, TH, On vertical Boundary layers in a rapidly rotating gas, J of Fluid Mech, to be published.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Claude-Michel Brauner Bernard Gay Jean Mathieu

Rights and permissions

Reprints and permissions

Copyright information

© 1977 Springer-Verlag

About this paper

Cite this paper

Louvet, P., Durivault, J. (1977). Compressible countercurrent flow in a strongly rotating cylinder. In: Brauner, CM., Gay, B., Mathieu, J. (eds) Singular Perturbations and Boundary Layer Theory. Lecture Notes in Mathematics, vol 594. Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0086095

Download citation

  • DOI: https://doi.org/10.1007/BFb0086095

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-08258-3

  • Online ISBN: 978-3-540-37340-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics