Skip to main content

Numerical simulation and experimental verification of cavity flows

  • Numerical Methods
  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Mathematics ((LNM,volume 1431))

Abstract

Cavity flows in cylindrical and spherical geometry are investigated numerically on the basis of a finite element calculation and are compared with experimental results which were gained by a photochemical, nearly disturbance-free visualization technique. The onset of secondary flows in the axial region is analysed according to the parameters which describe the moving boundaries and the geometry of the cavity. For the cylindrical geometry the influence of an independently co- or counterrotating bottom is investigated while the lid of the cylinder is rotating at different angular velocities leading to a recirculating zone in the axial region. The aspect ratio of the cylinder and the ratio of the angular velocities of top and bottom determine the region of existence of recirculation zones in the container. The analysis of the experimental results shows the existence of stationary and even space- and time-periodic solutions of the recirculating type of axial flows.

For the spherical gap flow the numerical analysis predicts clearly for different gap sizes the existence of recirculation regions between the south poles of the spherical boundaries. In the experiments such a type of secondary flow could be observed for the concentrical and the eccentrical position of the two spherical boundaries. In the eccentrical case also a time-periodic motion in axial direction could be detected experimentally. For the spherical geometry only the inner sphere is assumed to be in motion. The outer boundary is kept at rest. The penalty finite element calculations were performed using coarse grids.

This paper is in final form and no similar paper is being or has been submitted elsewhere

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   34.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   46.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1 Popovich, A.T., and Hummel, R.L.: A new method for non-disturbing turbulent flow measurements very close to the wall. Chem. Eng. Sc., Vol. 22 (1967) 21–25.

    Article  Google Scholar 

  2. 2 Larson, J., and Roesner, K.G.: Optical Flow-Velocity Measurements in Irregularly Shaped Cavities. in: Recent Contributions to Fluid Mechanics, ed. W. Haase, Springer-Verlag, 1982.

    Google Scholar 

  3. 3 Vogel, H.-U.: Experimentelle Ergebnisse über die laminare Strömung in einem zylindrischen Gehäuse mit darin rotierender Scheibe. Max-Planck-Institut für Strömungsforschung, Bericht 6 (1968).

    Google Scholar 

  4. 4 Vogel, H.-U: Rückströmungsblasen in Drallströmungen. Festschrift 50 Jahre Max-Planck-Institut für Strömungsforschung, Göttingen 1925–1975 (1975).

    Google Scholar 

  5. 5 Ronnenberg, B.: Ein selbstjustierendes 3-Komponenten-Laserdoppleranemometer nach dem Vergleichsstrahlverfahren, angewandt auf Untersuchungen in einer stationären zylindersymmetrischen Drehströmung mit einem Rückstromgebiet. Max-Planck-Institut für Strömungsforschung, Bericht 20 (1977).

    Google Scholar 

  6. 6 Escudier, M.P., and Zehnder, N.: Vortex-flow regimes. J. Fluid Mech. vol. 115 (1982) 105–121.

    Article  Google Scholar 

  7. 7 Escudier, M.: Observations of the flow produced in a cylindrical container by a rotating endwall. Experiments in Fluids 2, (1984) 189–196.

    Article  Google Scholar 

  8. 8 Escudier, M.: Vortex breakdown: Observations and explanations. in: Progress in Aerospace Sciences, vol. 25, No.2(1988) 189–229.

    Article  Google Scholar 

  9. 9 Bossel, H.H.: Vortex Breakdown Flowfield. Phys. of Fluids, vol. 12, No. 3 (1969) 498–508.

    Article  MATH  Google Scholar 

  10. 10 Lopez, J.M.: Axisymmetric vortex breakdown in an enclosed cylinder flow. Proc. 11th Int. Conf. on Num. Meth. in Fluid Dyn., Williamsburg, VA, June 27–July 1, 1988, Springer-Verlag (1989).

    Google Scholar 

  11. 11 Bar-Yoseph, P., Seelig, S., and Roesner, K.G.: Vortex breakdown in a spherical gap, Phys. Fluids 30 (6), (1987) 1531–1583.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

John G. Heywood Kyûya Masuda Reimund Rautmann Vsevolod A. Solonnikov

Rights and permissions

Reprints and permissions

Copyright information

© 1990 Springer-Verlag

About this paper

Cite this paper

Bar-Yoseph, P., Solan, A., Roesner, K.G. (1990). Numerical simulation and experimental verification of cavity flows. In: Heywood, J.G., Masuda, K., Rautmann, R., Solonnikov, V.A. (eds) The Navier-Stokes Equations Theory and Numerical Methods. Lecture Notes in Mathematics, vol 1431. Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0086073

Download citation

  • DOI: https://doi.org/10.1007/BFb0086073

  • Received:

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-52770-1

  • Online ISBN: 978-3-540-47141-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics