Advertisement

Cohérence et dualité sur le gros site de Zariski

  • André Hirschowitz
Conference paper
Part of the Lecture Notes in Mathematics book series (LNM, volume 1389)

Keywords

Module Coherents Peut Supposer Premier Facteur Projectif Lisse General Base Change 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Bibliographie

  1. [BP]
    C. Banica, M. Putinar, G. Schumacher, Variation der globalen Ext in Deformationen kompakter komplexer Raüme, Math. Ann. 250 (1980), 135–155MathSciNetCrossRefzbMATHGoogle Scholar
  2. [BH]
    J. Brun, A. Hirschowitz, Le problème de Brill-Noether pour les idéaux de ℙ2, Ann. Sci. ENS Paris 20 (1987), 171–200MathSciNetzbMATHGoogle Scholar
  3. [DLP]
    J.M. Drezet, J. Le Potier, Fibrés stables et fibrés exceptionnels sur ℙ2, Ann. Sci. ENS Paris 18 (1985), 193–244zbMATHGoogle Scholar
  4. [EGA]
  5. [GL]
    M. Green, R. Lazarsfeld, Deformation Theory, Generic Vanishing Theorems and some Conjectures of Enriques, Catanese and Beauville, Invent. Math. 90 (1987), 389–407MathSciNetCrossRefzbMATHGoogle Scholar
  6. [G]
    A. Grothendieck, Théorèmes de dualité pour les faisceaux algébriques cohérents, Sém. Bourbaki 149, Secr. Math. IHP Paris (1957)Google Scholar
  7. [GD]
    A. Grothendieck, J. Dieudonné, Eléments de Géométrie Algébrique, Publ. Math. IHES 8 (1961) et 11 (1961)Google Scholar
  8. [rH1]
    R. Hartshorne, Algebraic Geometry, Graduate texts in Math., vol.52, Berlin-Heidelberg-New York: Springer 1977Google Scholar
  9. [rH2]
    R. Hartshorne, Residues and Duality, Lect. Notes in Math., 20, Springer Verlag (1966)Google Scholar
  10. [aH1]
    A. Hirschowitz, Nouvelles fonctions constructibles et range des images directes. Dans ce volumeGoogle Scholar
  11. [aH2]
    A. Hirschowitz, Préjugés favorables pour les stratifications cohomologiques, (en préparation)Google Scholar
  12. [K]
    S.L. Kleiman, Rudiments of a General Base Change Theory, Appendix in [LK]Google Scholar
  13. [L]
    H. Lange, Universal Families of Extensions, Journal of Algebra 83 (1983), 101–112MathSciNetCrossRefzbMATHGoogle Scholar
  14. [LK]
    K. Lonsted, S.L. Kleiman, Basics on Families of Hyperelliptic Curves, Compos. Math. 38 (1979), 83–111MathSciNetzbMATHGoogle Scholar
  15. [M]
    D. Mumford, Abelian Varieties, Oxford Univ. Press (1970).Google Scholar
  16. [SGA IV]
    Théorie des topos et cohomologie étale des schémas. Dirigé par M.Artin, A. Grothendieck et J.L.Verdier. Lect. Notes in Math., 269, Springer-Verlag (1972).Google Scholar

Copyright information

© Springer-Verlag 1989

Authors and Affiliations

  • André Hirschowitz

There are no affiliations available

Personalised recommendations