Some results on the codimension-two Chow group of the moduli space of stable curves

  • Carel F. Faber
Conference paper
Part of the Lecture Notes in Mathematics book series (LNM, volume 1389)


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [A-C]
    E. Arbarello, M. Cornalba-The Picard groups of the moduli spaces of curves, Topology 26, 153–171 (1987).MathSciNetCrossRefzbMATHGoogle Scholar
  2. [Faber]
    C. Faber-Chow rings of moduli spaces of curves, thesis, Universiteit van Amsterdam, 1988.Google Scholar
  3. [Fulton]
    W. Fulton-Intersection Theory, Ergebnisse, Springer-Verlag, 1984.Google Scholar
  4. [Harer 1]
    J. Harer-The second homology group of the mapping class group of an orientable surface, Invent. Math. 72, 221–239 (1983).MathSciNetCrossRefzbMATHGoogle Scholar
  5. [Harer 2]
    J. Harer-The cohomology of the moduli space of curves, C.I.M.E. notes, Montecatini, 1985.Google Scholar
  6. [Hartshorne]
    R. Hartshorne, Algebraic Geometry, Texts in Math., Springer-Verlag, 1977.CrossRefzbMATHGoogle Scholar
  7. [H-M]
    J. Harris, D. Mumford-On the Kodaira dimension of the moduli space of curves, Invent. Math. 67, 23–88 (1982).MathSciNetCrossRefzbMATHGoogle Scholar
  8. [M-Enum]
    D. Mumford-Towards an enumerative geometry of the moduli space of curves, in Arithmetic and Geometry (dedicated to I. Shafarevich), Vol. II, Birkhaüser, 1983.Google Scholar

Copyright information

© Springer-Verlag 1989

Authors and Affiliations

  • Carel F. Faber
    • 1
  1. 1.Mathematisch InstituutUniversiteit van AmsterdamWB AmsterdamThe Netherlands

Personalised recommendations