Advertisement

Ensembles equivalents a un point frontiere dans un domaine lipschitzien

  • Zhang Yi-ping
Conference paper
Part of the Lecture Notes in Mathematics book series (LNM, volume 1393)

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    ANCONA A.-Principe de Harnack à la frontière et théorème de Fatou pour un opérateur elliptique dans un domaine lipschitzien. Ann. Inst. Fourier 28 (1978), 162–213.MathSciNetCrossRefzbMATHGoogle Scholar
  2. [2]
    BEURLING A.-A minimum principle for positive harmonic functions. Ann. Acad. Sc. Fenn. Ser. AI 372 (1965), 3–7.MathSciNetzbMATHGoogle Scholar
  3. [3]
    DAHLBERG B.-A minimum principle for positive harmonic functions. Proc. London Math. Soc. 33 (1976), 238–250.MathSciNetCrossRefzbMATHGoogle Scholar
  4. [4]
    HIROAKI AIKAWA.-On the thinness in a Lipschitz domain. Analysis 5 (1985), 347–382.MathSciNetzbMATHGoogle Scholar
  5. [5]
    HUNT R.A. and WHEEDEN R.L.-Positive harmonic functions on Lipschitz domains. Trans. Amer. Math. Soc. 147 (1970), 507–527.MathSciNetCrossRefzbMATHGoogle Scholar
  6. [6]
    SJOGREN P.-Une propriété des fonctions harmoniques positives, d'après Dahlberg. Séminaire de Théorie du Potentiel, Univ. PARIS VI, 1975.Google Scholar
  7. [7]
    WU J.-M. G.-Comparisons of kernel functions, boundary Harnack principle and relative Fatou theorem ou Lipschitz domains. Ann. Inst. Fourier 28 (1978), 147–167.MathSciNetCrossRefzbMATHGoogle Scholar
  8. [8]
    ZHANG Y.P.-Comparaison entre l'effilement interne et l'effilement minimal. C.R. Acad. Sc. Paris 304 (1987).Google Scholar
  9. [9]
    MAZ'JA V.G.-On Beurling's theorem for the minimum principle for positive harmonic functions (en Russe). Zapiski Nau. Sem. LOMI, 30, 1972, 76–90.MathSciNetGoogle Scholar

Copyright information

© Springer-Verlag 1989

Authors and Affiliations

  • Zhang Yi-ping
    • 1
  1. 1.Département de MathématiquesUniversite de WuhanWuhanChina

Personalised recommendations