Advertisement

Lignes de Green et frontiere de R.S. Martin en quelques cas particuliers

  • Jorge Salazar
Conference paper
  • 365 Downloads
Part of the Lecture Notes in Mathematics book series (LNM, volume 1393)

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Bibliographie

  1. [A]
    ANCONA A.-Régularité d'accès des bouts et frontière de Martin d'un domaine Euclidien. J. Math. pures et appl., 63, 1984, p. 215–260.MathSciNetzbMATHGoogle Scholar
  2. [Be]
    BENEDICKS-Positive harmonic functions vanishing on the boundary of certain domains in ℝn. Ark. für Math., vol. 18, no 1, 1980.Google Scholar
  3. [Br]
    BRELOT M.-Théorie axiomatique du potentiel. Les presses de l'Université de Montréal, 1965.Google Scholar
  4. [BC]
    BRELOT M. et CHOQUET G.-Espaces et lignes de Green. Ann. Inst. Fourier, Grenoble, 3, 1951, p. 199–263.MathSciNetCrossRefzbMATHGoogle Scholar
  5. [BL]
    BREZIS H. et LIEB E.-A relation between pointwise convergence of fonctions and convergence of functionals. Proc. of the Am. Math. Soc., vol. 88, 1983, p. 486–490.MathSciNetCrossRefzbMATHGoogle Scholar
  6. [CC]
    CONSTANTINESCU C. et CORNEA A.-Potential theory in Harmonic spaces. Springer Verlag, 1970.Google Scholar
  7. [D]
    DOOB J.L.-Boundary Property of functions with finite Dirichlet integrals. Ann. Inst. Fourier, Grenoble, 12, 1962, p. 573–621.MathSciNetCrossRefzbMATHGoogle Scholar
  8. [H]
    HASUMI M.-Hardy classes on infinitely connected Riemann surfaces. Lecture notes in Mathematics, 1027, 1980.Google Scholar
  9. [L]
    LITTLEWOOD J.E.-On functions subharmonics in a circle (II). Proc. London Math. Soc., 28, 1929.Google Scholar
  10. [M]
    MARTIN R.S.-Minimal positive harmonic functions. Trans. Amer. Math. Soc., 49, 1941, p. 137–172.MathSciNetCrossRefzbMATHGoogle Scholar
  11. [N]
    NAÏM L.-Sur le rôle de la frontière de R.S. Martin dans la théorie du potentiel. Ann. Inst. Fourier, 7, 1957, p. 183–281.CrossRefzbMATHGoogle Scholar
  12. [S]
    SALAZAR J.-Allure des fonctions harmoniques le long des lignes de Green et généralisations. C.R. Acad. Sci. Paris, 1987, t. 305, Série I, p. 781–783.Google Scholar

Copyright information

© Springer-Verlag 1989

Authors and Affiliations

  • Jorge Salazar
    • 1
  1. 1.Département de MathématiquesUniversite Paris-SudOrsay

Personalised recommendations