Topics in rees algebras of special ideals

  • Aron Simis
Conference paper
Part of the Lecture Notes in Mathematics book series (LNM, volume 1430)


associated graded ring catalectican matrix Cohen-Macaulay divisor class group generic matrix Gorenstein graph Hodge algebra maximal minor monomial normal rank Rees algebra straightening-closed ideal 1980 Mathematics subject classifications 13C05 13C13 13C15 13H10 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [BS]
    W. Bruns, A. Simis and N. V. Trung, Blow-up of straightening-closed ideals in ordinal Hodge algebras, Trans. Amer. Math. Soc. (to appear).Google Scholar
  2. [BV]
    W. Bruns and U. Vetter, “Determinantal rings,” Lecture Notes in Mathematics 1327 (Subseries: IMPA, Rio de Janeiro), Springer, Berlin-Heidelberg-New York, 1988.zbMATHGoogle Scholar
  3. [EH]
    D. Eisenbud and C. Huneke, Cohen-Macaulay Rees algebras and their specializations, J. Algebra 81 (1983), 202–224.MathSciNetCrossRefzbMATHGoogle Scholar
  4. [Har]
    F. Harary, “Graph theory,” Addison-Wesley Series in Mathematics, Addison-Wesley, Reading, Mass., 1972.Google Scholar
  5. [HE]
    M. Hochster and J. Eagon, Cohen-Macaulay rings, invariant theory and the generic perfection of determinantal loci, Amer. J. Math. 93 (1971), 1020–1058.MathSciNetCrossRefzbMATHGoogle Scholar
  6. [HSV 1]
    J. Herzog, A. Simis and W. V. Vasconcelos, Approximation complexes of blowing-up rings, J. Algebra 74 (1982), 466–493.MathSciNetCrossRefzbMATHGoogle Scholar
  7. [HSV 2]
    _____Koszul homology and blowing-up rings, in “Proceedings of Trento: Commutative Algebra,” Lectures Notes in Pure and Applied Mathematics, Marcel-Dekker, New York, 1983, pp. 79–169.Google Scholar
  8. [HSV 3]
    _____,On the arithmetic and homology of algebras of linear type, Trans. Amer. Math. Soc. 283 (1984), 661–683.MathSciNetCrossRefzbMATHGoogle Scholar
  9. [HSV 4]
    _____, Arithmetic of normal Rees algebras.Google Scholar
  10. [Hu 1]
    C. Huneke, Powers of ideals generated by weak d-sequences, J. Algebra 68 (1981), 471–509.MathSciNetCrossRefzbMATHGoogle Scholar
  11. [Hu 2]
    _____, Determinantal ideals of linear type, Arch. Math. 47 (1986), 324–329.MathSciNetCrossRefzbMATHGoogle Scholar
  12. [Hu 3]
    _____, Hilbert functions and symbolic powers, Michigan Math. J. 34 (1987), 293–318.MathSciNetCrossRefzbMATHGoogle Scholar
  13. [HuRo]
    C. Huneke and M. E. Rossi, The dimension and components of symmetric algebras, J. Algebra 98 (1986), 200–210.MathSciNetCrossRefzbMATHGoogle Scholar
  14. [HuS]
    C. Huneke and J. Sally, Birational extensions in dimension two and integrally closed ideals, J. Algebra 115 (1988), 491–500.MathSciNetCrossRefzbMATHGoogle Scholar
  15. [HuSV]
    C. Huneke, A. Simis and W. Vasconcelos, Reduced normal cones are domains, in “Proceedings of an AMS Special Session: Invariant Theory R. Fossum, M. Hochster and V. Lakshmibai, Eds.),” Contemporary Mathematics, American Mathematical Society, Providence, RI, 1989.Google Scholar
  16. [KM]
    G. Kempf, D. Mumford, et al., “Toroidal embeddings I,” Lecture Notes in Mathematics, Springer-Verlag, Berlin, 1973.zbMATHGoogle Scholar
  17. [KM]
    M. Lejeune and B. Teissier, “Clôture intégrale d'idéaux et équisingularité,” Séminaire au Centre de Mathématiques de l'Ecole Politechnique, 1974.Google Scholar
  18. [Mor]
    M. Morales, Noetherian symbolic blow-ups and examples in any dimension, Max-Planck-Institut Preprint Series.Google Scholar
  19. [Si]
    A. Simis, “Selected topics in Commutative Algebra,” Lecture Notes, IX ELAM, Santiago, Chile, 1988.Google Scholar
  20. [BS]
    A. Simis and N. V. Trung, The divisor class group of ordinary and symbolic blow-ups, Math. Zeit. 198 (1988), 479–491.MathSciNetCrossRefzbMATHGoogle Scholar
  21. [SV]
    A. Simis and W. Vasconcelos, The Krull dimension and integrality of symmetric algebras, Manuscripta Math. 61 (1988), 63–78.MathSciNetCrossRefzbMATHGoogle Scholar
  22. [Va]
    W. Vasconcelos, Symmetric algebras, in “This volume.”Google Scholar
  23. [Vi]
    R. Villarreal, Cohen-Macaulay graphs, Preprint.Google Scholar

Copyright information

© Springer-Verlag 1990

Authors and Affiliations

  • Aron Simis
    • 1
  1. 1.Instituto de MatemáticaUniversidade Federal da BahiaSalvador, BahiaBrazil

Personalised recommendations