Flatness and ideal-transforms of finite type

  • Peter Schenzel
Conference paper
Part of the Lecture Notes in Mathematics book series (LNM, volume 1430)


Prime Ideal Finite Type Noetherian Ring Integral Closure Local Cohomology 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    J. Brewer and W. Heinzer, Associated primes of principal ideals, Duke Math. J. 41 (1974), 1–7.MathSciNetCrossRefzbMATHGoogle Scholar
  2. [2]
    F. W. Call and R. Y. Sharp, A short proof of the local Lichtenbaum-Hartshorne theorem on the vanishing of local cohomology, Bull. London Math. Soc. 18 (1986), 261–264.MathSciNetCrossRefzbMATHGoogle Scholar
  3. [3]
    I. S. Cohen, Length of prime ideal chains, Amer. J. Math. 76 (1954), 654–668.MathSciNetCrossRefzbMATHGoogle Scholar
  4. [4]
    P. M. Eakin, Jr, W. Heinzer, D. Katz and L. J. Ratliff, Jr., Notes on ideal-transforms, Rees rings and Krull rings, J. of Algebra 110 (1987), 407–419.MathSciNetCrossRefzbMATHGoogle Scholar
  5. [5]
    A. Grothendieck, Local cohomology, Lect. Notes in Math. No. 41, Berlin-Heidelberg-New York, 1970.Google Scholar
  6. [6]
    R. Hartshorne, Cohomological dimension of algebraic varieties, Ann. of Math. 88 (1968), 403–450.MathSciNetCrossRefzbMATHGoogle Scholar
  7. [7]
    W. Heinzer, On Krull overrings of a Noetherian domain, Proc. Amer. Math. Soc. 22 (1969), 217–222.MathSciNetCrossRefzbMATHGoogle Scholar
  8. [8]
    D. Katz and L. J. Ratliff, Jr., Two notes on ideal-transforms, Math. Proc. Camb. Phil. Soc. 102 (1987), 389–397.MathSciNetCrossRefzbMATHGoogle Scholar
  9. [9]
    H. Matsumura, “Commutative Algebra,” 2nd edit., New York, 1980.Google Scholar
  10. [10]
    M. Nagata, A treatise on the 14th problem of Hilbert, Mem. Coll. Sci. Kyoto Univ. 30 (1956), 57–82.MathSciNetzbMATHGoogle Scholar
  11. [11]
    M. Nagata, Lecture on the fourteenth problem of Hilbert, Tata Inst. Fund. Res., Lect. on Math. No. 31, Bombay, 1965.Google Scholar
  12. [12]
    F. Richman, Generalized quotient rings, Proc. Amer. Math. Soc. 16 (1965), 794–799.MathSciNetCrossRefzbMATHGoogle Scholar
  13. [13]
    P. Schenzel, Finiteness of relative Rees rings and asymptotic prime divisors, Math. Nachr. 129 (1986), 123–148.MathSciNetCrossRefzbMATHGoogle Scholar
  14. [14]
    P. Schenzel, Filtrations and Noetherian symbolic blowup rings, Proc. Amer. Math. Soc. 102 (1988), 817–822.MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer-Verlag 1990

Authors and Affiliations

  • Peter Schenzel
    • 1
  1. 1.Sektion Mathematik der Martin-Luther-Universität Halle-WittenbergHalleGerman Democratic Republic

Personalised recommendations