Advertisement

Generic residual intersections

  • Graig Huneke
  • Bernd Ulrich
Conference paper
Part of the Lecture Notes in Mathematics book series (LNM, volume 1430)

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    M. Artin and M. Nagata, Residual intersections in Cohen-Macaulay rings, J. Math. Kyoto Univ. 12 (1972), 307–323.MathSciNetzbMATHGoogle Scholar
  2. 2.
    W. Bruns, Die Divisorenklassengruppe der Restklassenringe von Polynomringen nach Determinantenidealen, Revue Roumaine Math. Pur. Appl.20(1975), 1109–1111.MathSciNetzbMATHGoogle Scholar
  3. 3.
    W. Bruns, Divisors on varieties of complexes, Math. Ann. 264 (1983), 53–71.MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    W. Bruns, A. Kustin, and M. Miller, The resolution of the generic residual intersection of a complete intersection, preprint.Google Scholar
  5. 5.
    W. Bruns and U. Vetter, “Determinantal Rings,” Lect. Notes Math. 1327, Springer, Berlin-Heidelberg, 1988.zbMATHGoogle Scholar
  6. 6.
    D. Buchsbaum and D. Eisenbud, Remarks on ideals and resolutions, Sympos. Math. XI (1973), 193–204.MathSciNetzbMATHGoogle Scholar
  7. 7.
    R. Fossum, “The divisor class group of a Krull domain,” Springer, Berlin-Heidelberg, 1973.CrossRefzbMATHGoogle Scholar
  8. 8.
    J. Herzog, A. Simis, and W. Vasconcelos, Approximation complexes and blowing-up rings, J. Algebra 74 (1982), 466–493.MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    J. Herzog, W. Vasconcelos, and R. Villarreal, Ideals with sliding depth, Nagoya Math. J. 99 (1985), 159–172.MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    M. Hochster, Criteria for the equality of ordinary and symbolic powers, Math. Z. 133 (1973), 53–65.MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    M. Hochster, Properties of Noetherian rings stable under general grade reduction, Arch. Math. 24 (1973), 393–396.MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    C. Huneke, On the associated graded ring of an ideal, Illinois J. Math. 26 (1982), 121–137.MathSciNetzbMATHGoogle Scholar
  13. 13.
    C. Huneke, Linkage and the Koszul Homology of ideals, Amer. J. Math. 104 (1982), 1043–1062.MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    C. Huneke, Strongly Cohen-Macaulay schemes and residual intersections, Trans. Amer. Math. Soc. 277 (1983), 739–673.MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    C. Huneke and B. Ulrich, Divisor class groups and deformations, Amer. J. Math. 107 (1985), 1265–1303.MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    C. Huneke and B. Ulrich, Algebraic linkage, Duke Math. J. 56 (1988), 415–429.MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    C. Huneke and B. Ulrich, Residual intersections, J. reine angew. Math. 390 (1988), 1–20.MathSciNetzbMATHGoogle Scholar
  18. 18.
    C. Huneke and B. Ulrich, Local properties of licci ideals, in preparation.Google Scholar
  19. 19.
    P. Murthy, A note on factorial rings, Arch. Math. 15 (1964), 418–420.MathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    D. Kirby, A sequence of complexes associated with a matrix, J. London Math. Soc. 7 (1973), 523–530.MathSciNetzbMATHGoogle Scholar
  21. 21.
    A. Kustin and B. Ulrich, A family of complexes associated to an almost alternating map, with applications to residual intersections, in preparation.Google Scholar
  22. 22.
    A. Simis and W. Vasconcelos, The syzygies of the conormal module, Amer. J. Math. 103 (1981), 203–224.MathSciNetCrossRefzbMATHGoogle Scholar
  23. 23.
    B. Ulrich, Parafactoriality and small divisor class groups, in preparation.Google Scholar
  24. 24.
    Y. Yoshino, The canonical module of graded rings defined by generic matrices, Nagoya Math. J. 81 (1981), 105–112.MathSciNetCrossRefzbMATHGoogle Scholar
  25. 25.
    Y. Yoshino, Some results on the variety of complexes, Nagoya J. Math 93 (1984), 39–60.MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer-Verlag 1990

Authors and Affiliations

  • Graig Huneke
    • 1
    • 2
  • Bernd Ulrich
    • 1
    • 2
  1. 1.Department of MathematicsPurdue UniversityWest LafayetteUSA
  2. 2.Department of MathematicsMichigan State UniversityEast LansingUSA

Personalised recommendations