Straightening laws on modules and their symmetric algebras

  • Winfried Bruns
Conference paper
Part of the Lecture Notes in Mathematics book series (LNM, volume 1430)


Exact Sequence Prime Ideal Young Diagram Linear Independence Residue Class 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [AD]
    Abeasis, S., del Fra, A., Young diagrams and ideals of Pfaffians, Adv. Math. 35 (1980), 158–178.MathSciNetCrossRefzbMATHGoogle Scholar
  2. [Av.1]
    Avramov, L.L., A class of factorial domains, Serdica 5 (1979), 378–379.MathSciNetzbMATHGoogle Scholar
  3. [Av.2]
    Avramov, L.L., Complete intersections and symmetric algebras, J. Algebra 73 (1981), 248–263.MathSciNetCrossRefzbMATHGoogle Scholar
  4. [Br.1]
    Bruns, W., Generic maps and modules, Compos. Math. 47 (1982), 171–193.MathSciNetzbMATHGoogle Scholar
  5. [Br.2]
    Bruns, W., Divisors on varieties of complexes, Math. Ann. 264 (1983), 53–71.MathSciNetCrossRefzbMATHGoogle Scholar
  6. [Br.3]
    Bruns, W., Addition to the theory of algebras with straightening law, in: M. Hochster, C. Huneke, J.D. Sally (Ed.), Commutative Algebra, Springer 1989.Google Scholar
  7. [BKM]
    Bruns, W., Kustin, A., Miller, M., The resolution of the generic residual intersection of a complete intersection, J. Algebra (to appear).Google Scholar
  8. [BS]
    Bruns, W., Simis, A., Symmetric algebras of modules arising from a fixed submatrix of a generic matrix., J. Pure Appl. Algebra 49 (1987), 227–245.MathSciNetCrossRefzbMATHGoogle Scholar
  9. [BS]
    Bruns, W., Simis, A., Ngô Viêt Trung, Glow-up of straightening closed ideals in ordinal Hodge algebras, Trans. Amer. Math. Soc. (to appear).Google Scholar
  10. [BV.1]
    Bruns, W., Vetter, U., “Determinantal rings,” Springer Lect. Notes Math. 1327, 1988.Google Scholar
  11. [BV.2]
    Bruns, W., Vetter, U., Modules defined by generic symmetric and alternating maps, Proceedings of the Minisemester on Algebraic Geometry and Commutative Algebra, Warsaw 1988 (to appear).Google Scholar
  12. [BE]
    Buchsbaum, D., Eisenbud, D., Algebra structures for finite free resolutions, and some structure theorems for ideals of codimension 3, Amer. J. Math. 99 (1977), 447–485.MathSciNetCrossRefzbMATHGoogle Scholar
  13. [DEP.1]
    De Concini, C., Eisenbud, D., Procesi, C., Young diagrams and determinantal varieties, Invent. Math. 56 (1980), 129–165.MathSciNetCrossRefzbMATHGoogle Scholar
  14. [DEP.2]
    De Concini, C., Eisenbud, D., Procesi, C., “Hodge algebras,” Astérisque 91, 1982.Google Scholar
  15. [DS]
    De Concini, C., Strickland, E., On the variety of complexes, Adv. Math. 41 (1981), 57–77.MathSciNetCrossRefzbMATHGoogle Scholar
  16. [Ei]
    Eisenbud, D., Introduction to algebras with straightening laws, in “Ring Theory and Algebra III,” M. Dekker, New York and Basel, 1980, pp. 243–267.Google Scholar
  17. [EH]
    Eisenbud, D., Huneke, C., Cohen-Macaulay Rees algebras and their specializations, J. Algebra 81 (1983), 202–224.MathSciNetCrossRefzbMATHGoogle Scholar
  18. [Fo]
    Fossum, R.M., “The divisor class group of a Krull domain,” Springer, Berlin-Heidelberg-New York, 1973.CrossRefzbMATHGoogle Scholar
  19. [Go]
    Goto, S., On the Gorensteinness of determinantal loci, J. Math. Kyoto Univ. 19 (1979), 371–374.MathSciNetzbMATHGoogle Scholar
  20. [HK]
    Herzog, J., Kunz, E., “Der kanonische Modul eines Cohen-Macaulay-Rings,” Springer Lect. Notes Math. 238, 1971.Google Scholar
  21. [HV]
    Herzog, J., Vasconcelos, W.V., On the divisor class group of Rees algebras, J. Algebra 93 (1985), 182–188.MathSciNetCrossRefzbMATHGoogle Scholar
  22. [Hu]
    Huneke, C., Powers of ideals generated by weak d-sequences, J. Algebra 68 (1981), 471–509.MathSciNetCrossRefzbMATHGoogle Scholar
  23. [KL]
    Kleppe, H., Laksov, D., The algebraic structure and deformation of Pfaffian schemes, J. Algebra 64 (1980), 167–189.MathSciNetCrossRefzbMATHGoogle Scholar
  24. [Ku]
    Kutz, R.E., Cohen-Macaulay rings and ideal theory of invariants of algebraic groups, Trans. Amer. Math. Soc. 194 (1974), 115–129.MathSciNetCrossRefzbMATHGoogle Scholar
  25. [Ma]
    Matsumura, H., “Commutative Algebra,” Second Ed., Benjamin/Cummings, Reading, 1980.zbMATHGoogle Scholar
  26. [Ve.1]
    Vetter, U., The depth of the module of differentials of a generic determinantal singularity, Commun. Algebra 11 (1983), 1701–1724.MathSciNetCrossRefzbMATHGoogle Scholar
  27. [Ve.2]
    Vetter, U., Generische determinantielle Singularitäten: Homologische Eigenschaften des Derivationenmoduls, Manuscripta Math. 45 (1984), 161–191.MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer-Verlag 1990

Authors and Affiliations

  • Winfried Bruns
    • 1
  1. 1.Universität OsnabrückVechta

Personalised recommendations