Skip to main content

The initial value problem for a class of nonlinear dispersive equations

  • Conference paper
  • First Online:
Functional-Analytic Methods for Partial Differential Equations

Part of the book series: Lecture Notes in Mathematics ((LNM,volume 1450))

Abstract

We consider the initial value problem for a (generalized) equation which arises in the study of propagation of unidirectional nonlinear, dispersive waves. The aim is to study the local and global well-posedness of this problem in classical Sobolev spaces H s. For the associated linear problem sharp local and global smoothing effects are proven. It is shown how to use these effects to establish well-posedness result for the nonlinear problem.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 34.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 46.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bergh, J., and Löfstöm, J., Interpolation Spaces, Springer-Verlag, Berlin and New York (1970).

    Google Scholar 

  2. Bona, J. L., and Scott, R., Solutions of the Korteweg-de Vries equation in fractional order Sobolev spaces, Duke Math. J. 43 (1976), 87–99.

    Article  MathSciNet  MATH  Google Scholar 

  3. Bona, J. L., and Smith, R., The initial value problem for the Korteweg-de Vries equation, Philos. Trans. Roy. Soc. London Ser A 278 (1975), 555–601.

    Article  MathSciNet  MATH  Google Scholar 

  4. Carleson, L., Some analytical problems related to statistical mechanics, Euclidean Harmonic Analysis, Lecture Notes in Math., Springer-Verlag, Berlin and New York, 779 (1979), 9–45.

    Google Scholar 

  5. Christ, F. M., and Weinstein, M. I., Dispersion of small amplitude solutions of the generalized Korteweg-de Vries equation, preprint.

    Google Scholar 

  6. Coifman, R. R., and Meyer, Y., Au delá des opérateurs pseudodifféntiels, Asterisque 57, Société Mathématique de France (1978).

    Google Scholar 

  7. Coifman, R. R., and Meyer, Y., Nonlinear harmonic analysis, operator theory and P.D.E., Beijing Lectures in Harmonic Analysis, Princeton University Press (1986), 3–45.

    Google Scholar 

  8. Constantin, P. and Saut, J. C., Local smoothing properties of dispersive equations, Journal Amer. Math. Soc. 1 (1988), 413–446.

    Article  MathSciNet  MATH  Google Scholar 

  9. Dahlberg, B. and Kenig, C. E., A note on the almost everywhere behavior of solutions to the Schrödinger equation, Harmonic Analysis, Lecture Notes in Math., Springer-Verlag, Berlin and New York, 908 (1982), 205–208.

    MATH  Google Scholar 

  10. Ginibre, J. and Velo, G., Scattering theory in the energy space for a class of nonlinear Schrödinger equation, J. Math. Pures et Appl. 64 (1985), 363–401.

    MathSciNet  MATH  Google Scholar 

  11. Ginibre, J. and Velo, G., Commutator expansions and smoothing properties of generalized Benjamin-Ono equations, Ann. IHP (Phys. Theor.) 51 (1989), 221–229.

    MathSciNet  MATH  Google Scholar 

  12. Ginibre, J., and Tsutsumi, Y., Uniqueness for the generalized Korteweg-de Vries equations, SIAM J. Math. Anal. 20 (1989), 1388–1425.

    Article  MathSciNet  MATH  Google Scholar 

  13. Kato, T., Quasilinear equations of evolutions, with applications to partial differential equations, Lecture Notes in Math., Springer-Verlag, Berlin and New York, 448 (1975), 27–50.

    Google Scholar 

  14. Kato, T., On the Korteweg-de Vries equation, Manuscripta Math. 29 (1979), 89–99.

    Article  MATH  Google Scholar 

  15. Kato, T., On the Cauchy problem for the (generalized) Korteweg-de Vries equation, Advances in Mathematics Supplementary Studies, Studies in Applied Math. 8 (1983), 93–128.

    MathSciNet  Google Scholar 

  16. Kato, T., and Ponce, G., Commutator estimates and the Euler and Navier-Stokes equations, Comm. Pure Appl. Math. 41 (1988), 891–907.

    Article  MathSciNet  MATH  Google Scholar 

  17. Kenig, C. E., Ponce, G., and Vega, L., On the (generalized) Korteweg-de Vries equation, Duke Math. J. 59 (1989), 585–610.

    Article  MathSciNet  MATH  Google Scholar 

  18. Kenig, C. E., Ponce, G., and Vega, L., Oscillatory integrals and regularity of dispersive equations, preprint.

    Google Scholar 

  19. Kenig, C.E., and Ruiz, A., A strong type (2,2) estimate for the maximal function associated to the Schrödinger equation, Trans. Amer. Math. Soc. 280 (1983), 239–246.

    MathSciNet  MATH  Google Scholar 

  20. Kruzhkov, S. N., and Framinskii, A. V., Generalized solutions of the Cauchy problem for the Korteweg-de Vries equation, Math. U.S.S.R. Sbornik 48 (1984), 93–138.

    Article  Google Scholar 

  21. Marshall, B., Mixed norm estimates for the Klein-Gordon equation, Proceedings of a Conference in Harmonic Analysis, Chicago (1981), 638–649.

    Google Scholar 

  22. Pecher, H., Nonlinear small data scattering for the wave and Klein-Gordon equation, Math. Z. 185(1985), 261–270.

    Article  MathSciNet  MATH  Google Scholar 

  23. Ponce, G., Smoothing properties of solutions of the Benjamin-Ono equation, Lecture Notes Pure Appl. Math. 122 (C. Sadosky Ed) Marcel Dekker, Inc. (1990), 667–679.

    MathSciNet  MATH  Google Scholar 

  24. Ponce, G. and Vega, L., Nonlinear small data scattering for the generalized Korteweg-de Vries equation, to appear in J. Funct. Anal.

    Google Scholar 

  25. Saut, J.C., Sur quelque généralisations de l'equation de Korteweg-de Vrie, J. Math. Pure Appl. 58 (1979), 21–61.

    MathSciNet  MATH  Google Scholar 

  26. Saut, J. C., and Temam, R. Remarks on the Korteweg-de Vries equation, Israel J. Math. 24 (1976), 78–87.

    Article  MathSciNet  MATH  Google Scholar 

  27. Sjölin, P., Regularity of solutions to the Schrödinger equation, Duke Math. J. 55 (1987), 699–715.

    Article  MathSciNet  MATH  Google Scholar 

  28. Stein, E. M., and Weiss, G., Introduction to Fourier Analysis in Euclidean Spaces, Princeton University Press (1971).

    Google Scholar 

  29. Strichartz, R. S., Restriction of Fourier transform to quadratic surfaces and decay of solutions of wave equations, Duke Math. J. 44 (1977), 705–714.

    Article  MathSciNet  MATH  Google Scholar 

  30. Tom, M. M., Smoothing properties of some weak solutions of the Benjamin-Ono equation, to appear in Diff. and Int. Eqs.

    Google Scholar 

  31. Tomas, P., A restriction theorem for the Fourier transform, Bull. A.M.S. 81 (1975), 477–478.

    Article  MathSciNet  MATH  Google Scholar 

  32. Vega, L., Schrödinger equations: pointwise convergence to the initial data, Proc. Amer. Math. Soc. 102 (1988), 874–878.

    MathSciNet  MATH  Google Scholar 

  33. Vega, L., Doctoral Thesis, Universidad Autonoma, Madrid, Spain(1988).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Hiroshi Fujita Teruo Ikebe Shige Toshi Kuroda

Rights and permissions

Reprints and permissions

Copyright information

© 1990 Springer-Verlag

About this paper

Cite this paper

Kenig, C.E., Ponce, G., Vega, L. (1990). The initial value problem for a class of nonlinear dispersive equations. In: Fujita, H., Ikebe, T., Kuroda, S.T. (eds) Functional-Analytic Methods for Partial Differential Equations. Lecture Notes in Mathematics, vol 1450. Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0084903

Download citation

  • DOI: https://doi.org/10.1007/BFb0084903

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-53393-1

  • Online ISBN: 978-3-540-46818-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics