Advertisement

Sphere de Riemann et Geometrie des polynomes

  • Michel Langevin
Chapter
Part of the Lecture Notes in Mathematics book series (LNM, volume 1415)

Keywords

Version Affine Peut Aller Fraction Rationnelle Sont Distincts Sont Disjoint 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [D.1]
    Dieudonné J. Sur le théorème de Grace et les relations algébriques analogues, Bull. S.M.F.,t.60,1932,p.173–196zbMATHGoogle Scholar
  2. [D.2]
    Dieudonné J. La théorie analytique des polynômes d'une variable (à coefficients quelconques),Mémorial des Sc. Math.,Fasc. XCIII,1938,Gauthier-VillarsGoogle Scholar
  3. [L]
    Langevin M. Géométrie autour d'un théorème de Bernstein, Sém. de Th. des Nombres de Paris 1982–83, Birkhäuser (1984),p.143–160Google Scholar
  4. [L.S.]
    Lieb E. and Sokal A. A general Lee-Yang theorem for one-component and multicomponent ferromagnets, Commun.Math.Phys.80,1981,p.153–179MathSciNetCrossRefGoogle Scholar
  5. [M]
    Marden M. Geometry of polynomials, A.M.S. Math.Surveys no3,1966,Providence(R.I.)Google Scholar
  6. [R.1]
    Ruelle D. Extension of the Lee-Yang circle theorem, Phys. Rev. Let. 26,1971, p.303–304MathSciNetCrossRefGoogle Scholar
  7. [R.2]
    Ruelle D. Some remarks on the location of zeroes of the partition function for lattice systems, Comm.Math.Phys.31,1973),p.265–277.MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer-Verlag 1990

Authors and Affiliations

  • Michel Langevin
    • 1
  1. 1.U.A. Problèmes DiophantiensInstitut Henri PoincaréParis cedex 05

Personalised recommendations