Advertisement

Relation de Szegö sur la derivee d'un polynome

  • A. Durand
Chapter
  • 215 Downloads
Part of the Lecture Notes in Mathematics book series (LNM, volume 1415)

Keywords

POLYNOMES ALGEBRIQUES Transformation Homographique Prescribe Zero Seron Alors 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    S. BERNSTEIN. Leçons sur les propriétés extrémales et la meilleure approximation des lonctions analytiques d'une variable réelle. Gauthier-Villars, Paris (1926).zbMATHGoogle Scholar
  2. [2]
    R.P. BOAS. The derivative of a trigonometric integral. J. London Math. Soc. 12 (1937), 164–165.MathSciNetCrossRefzbMATHGoogle Scholar
  3. [3]
    N.G. de BRUIJN. Inequalities concerning polynomials in the complex domain. Nederl. Akad. Wetensch. Pro. 50 (1947), 1265–1272 = Indag. Math. 9 (1947), 591–598.MathSciNetzbMATHGoogle Scholar
  4. [4]
    A. GIROUX, Q.I. RAHMAN, G. SCHMEISSER. On Bernstein's inequality. Can. J. Math. 31 no 2 (1979), 347–353.MathSciNetCrossRefzbMATHGoogle Scholar
  5. [5]
    A. GIROUX, Q.I. RAHMAN. Inequalities lor a polynoial with a prescribed zero. Trans. Amer. Math. Soc. 193 (1974), 67–98.MathSciNetCrossRefzbMATHGoogle Scholar
  6. [6]
    P.D. LAX. Prool of a conjecture of P. Erdös on the derivative of a polynomial. Bull. Amer. Math. Soc. 50 (1944), 509–513.MathSciNetCrossRefzbMATHGoogle Scholar
  7. [7]
    G.G. LORENTZ. Approximation of functions. Athena Series. Selected Topics in Math. Holt, Rinehart and Winston. USA (1966).Google Scholar
  8. [8]
    M.A. MALIK. On the derivative of a polynomial. J. London Math. Soc. (2) 1 (1969), 57–60.MathSciNetCrossRefzbMATHGoogle Scholar
  9. [9]
    G. SZEGÖ. Bermerkungen zu einem Satz von J.H. Grace über die Wurzeln algebraischer Gleichungen. Math. Z. 13 (1922), 28–55.MathSciNetCrossRefzbMATHGoogle Scholar
  10. [10]
    G. SZEGÖ. Uber einen Satz des Herrn Serge Bernstein. Schirlten der Königsberger Gelehrten Gesellschalt. 5 (1928), 59–70.zbMATHGoogle Scholar
  11. [11]
    P. TURAN. Uber die Ableitung von Polynomen. Compositio Math. 7 (1939), 89–95.MathSciNetzbMATHGoogle Scholar

Copyright information

© Springer-Verlag 1990

Authors and Affiliations

  • A. Durand
    • 1
  1. 1.Département de MathématiquesUniversité de LimogesLimoges Cedex

Personalised recommendations