Discrete time process algebra

  • J. C. M. Baeten
  • J. A. Bergstra
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 630)


The axiom system ACP of [BEK84] is extended to ACPdt, which involves discrete time delay, and then to ACPdt+ATP, an axiomatisation that adds key features of ATP [NIS90] to ACP. We give an interpretation of all discrete time constructs in the real time theory ACPp√I.


Time Slice Operational Semantic Atomic Action Process Algebra Time Stop 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [BAB91a]
    J.C.M. Baeten & J.A. Bergstra, Real time process algebra. Formal Aspects of Computing 3 (2), 1991, pp. 142–188.zbMATHMathSciNetCrossRefGoogle Scholar
  2. [BAB91b]
    J.C.M. Baeten & J.A. Bergstra, A survey of axiom systems for process algebras, report P9111, Programming Research Group, University of Amsterdam 1991.Google Scholar
  3. [BAB91c]
    J.C.M. Baeten & J.A. Bergstra, Process algebra with signals and conditions, report CS-R9103, CWI, Amsterdam 1991. To appear in Proc. NATO Summer School, Marktoberdorf 1990 (M. Broy, ed.), Springer Verlag.Google Scholar
  4. [BAB92]
    J.C.M. Baeten & J.A. Bergstra, Real space process algebra, report CSN 92/03, Dept. of Comp. Sci., Eindhoven University of Technology 1992.Google Scholar
  5. [BAW90]
    J.C.M. Baeten & W.P. Weijland, Process algebra, Cambridge Tracts in Theor. Comp. Sci. 18, Cambridge University Press 1990.Google Scholar
  6. [BEK84]
    J.A. Bergstra & J.W. Klop, Process algebra for synchronous communication, Inf. & Control 60, 1984, pp. 109–137.zbMATHMathSciNetCrossRefGoogle Scholar
  7. [BRHR84]
    S.D. Brookes, C.A.R. Hoare & A.W. Roscoe, A theory of communicating sequential processes, JACM 31 (3), 1984, pp. 560–599.zbMATHMathSciNetCrossRefGoogle Scholar
  8. [GRO90a]
    J.F. Groote, Specification and verification of real time systems in ACP, in: Proc. 10th Symp. on Protocol Specification, Testing and Verification, Ottawa (L. Logrippo, R.L. Probert & H. Ural, eds.), North-Holland, Amsterdam 1990, pp. 261–274.Google Scholar
  9. [GRO90b]
    J.F. Groote, Transition system specifications with negative premises, in: Proc. CONCUR'90, Amsterdam (J.C.M. Baeten & J.W. Klop, eds.), LNCS 458, Springer 1990, pp. 332–341.Google Scholar
  10. [GM91]
    D.P. Gruska & A. Maggiolo-Schettini, A timed process description language based on CCS, report TR-9/91, Universitá di Pisa 1991.Google Scholar
  11. [HAN91]
    H. Hansson, Time and probabilities in formal design of distributed systems, Ph.D. thesis, report DoCS 91/27, Uppsala University, 1991.Google Scholar
  12. [HER90]
    M. Hennessy & T. Regan, A temporal process algebra, report 2/90, University of Sussex 1990.Google Scholar
  13. [KLU91]
    A.S. Klusener, Completeness in real time process algebra, report CS-R9106, CWI Amsterdam 1991. Extended abstract in Proc. CONCUR'91, Amsterdam (J.C.M. Baeten & J.F. Groote, eds.), Springer LNCS 527, 1991, pp. 376–392.Google Scholar
  14. [KLU92]
    A.S. Klusener, Abstraction in real time process algebra, to appear in Proc. REX Workshop on Real Time: Theory in Practice (J.W. de Bakker, C. Huizing, W.P. de Roever & G. Rozenberg, eds.), Mook 1991, Springer LNCS.Google Scholar
  15. [MIL89]
    R. Milner, Communication and concurrency, Prentice-Hall 1989.Google Scholar
  16. [MOT89]
    F. Moller & C. Tofts, A temporal calculus of communicating systems, report LFCS-89-104, University of Edinburgh 1989.Google Scholar
  17. [MOT90]
    F. Moller & C. Tofts, A temporal calculus of communicating systems, in: Proc. CONCUR'90, Amsterdam (J.C.M. Baeten & J.W. Klop, eds.), LNCS 458, Springer 1990, pp. 401–415.Google Scholar
  18. [NIS90]
    X. Nicollin & J. Sifakis, The algebra of timed processes ATP: theory and application, report RT-C26, IMAG, Grenoble 1990.Google Scholar
  19. [NSVR90]
    X. Nicollin, J.-L. Richier, J. Sifakis & J. Voiron, ATP: an algebra for timed processes, in Proc. IFIP TC2 Conf. on Progr. Concepts & Methods, Sea of Gallilee, Israel 1990.Google Scholar
  20. [RER88]
    G.M. Reed & A.W. Roscoe, A timed model for communicating sequential processes, TCS 58, 1988, pp. 249–261.zbMATHMathSciNetCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1992

Authors and Affiliations

  • J. C. M. Baeten
    • 1
  • J. A. Bergstra
    • 2
    • 3
  1. 1.Department of Computing ScienceEindhoven University of TechnologyMB EindhovenThe Netherlands
  2. 2.Programming Research GroupUniversity of AmsterdamSJ AmsterdamThe Netherlands
  3. 3.Department of PhilosophyUtrecht UniversityCS UtrechtThe Netherlands

Personalised recommendations