Remarks on one fixed point A5-actions on homology spheres

Transformation Groups
Part of the Lecture Notes in Mathematics book series (LNM, volume 1474)


Isotropy Subgroup Isotropy Type Homology Sphere Standard Sphere Integral Group Ring 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Bak, A., The computation of surgery groups of finite groups with abelian 2-hyperelementary subgroups, Lecture Notes in Math. (ed. by M. R. Stein) 551 (1976), 384–407, Springer, Berlin-Heidelberg-New York-Tokyo.MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Bak, A., “K-Theory of Forms,” Princeton University Press, Princeton, 1981.zbMATHGoogle Scholar
  3. 3.
    Bak, A. and Kolster, M., The computation of odd dimensional projective surgery groups of finite groups, Topology 21 (1982), 35–63.MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Bak. A. and Morimoto M., Equivariant surgery theory and its applications, in preparation.Google Scholar
  5. 5.
    G. E. Bredon, “Introduction to Compact Transformation Groups,” Academic Press, New York-London, 1972.zbMATHGoogle Scholar
  6. 6.
    Buchdahl, N. P., Kwasik, S. and Schultz, R., One fixed point actions on low-dimensional spheres, preprint, Tulane University and Purdue University.Google Scholar
  7. 7.
    Conner P. E. and Floyd E. E., “Differentiable Periodic Maps,” Ergebniss der Mathematik und Ihere Grenzgebiete Neue Folge Band 33, Springer, Berlin-Heidelbrg-New York-Tokyo, 1964.Google Scholar
  8. 8.
    Dovermann, K. H., Masuda, M. and Petrie, T., Fixed point free algebraic actions on varieties diffeomorphic to R n, preprint.Google Scholar
  9. 9.
    Dovermann, K. H. and Masuda, M., Fixed point free low dimensional real algebraic actions of A 5 on contractible varieties, preprint.Google Scholar
  10. 10.
    Dress, A., Induction and structure theorems for orthogonal representations of finite groups, Ann. Math. 102 (1975), 291–325.MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Furuta, F., A remark on a fixed point of finite group action on S 4, Topology 28 (1989), 35–38.MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Grove, L.C. and Benson, C. T., “Finite Reflection Groups,” (Second Edition) Graduate Texts in Mathematics 99, Springer, Berlin-Heidelberg-New York-Tokyo, 1985.CrossRefzbMATHGoogle Scholar
  13. 13.
    Kervaire, M. A. and Milnor, J. W., Groups of homotopy spheres I, Ann. Math. 77 (1963), 504–537.MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Kolster, M., Even dimensional projective surgery groups of finite groups, Lecture Notes in Math (ed. by R. K. Dennis) 967 (1982), 239–279, Springer, Berlin-Heidelberg-New York-Tokyo.MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Laitinen, E.and Traczyk, P., Pseudofree representations and 2-pseudofree actions on spheres, Proc. Amer. Math. Soc. 97 (1986), 151–157.MathSciNetzbMATHGoogle Scholar
  16. 16.
    Morimoto, M., On one fixed point actions on spheres, Proc. Japan Acad. 63 Ser. A (1987), 95–97.MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Morimoto, M., S 4 does not have one fixed point actions, Osaka J. Math. 25 (1988), 575–580.MathSciNetzbMATHGoogle Scholar
  18. 18.
    Morimoto, M., Bak groups and equivariant surgery, K-Theory 2 no. 4 (1989), 465–483.MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    Morimoto, M., Most of the standard spheres have one fixed point actions of A 5, Lecture Notes in Math (ed. by K. Kawakubo) 1375 (1989), 240–258, Springer, Berlin-Heidelberg-New York-Tokyo.MathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    Morimoto, M., Bak groups and equivariant surgery II, to appear in K-Theory.Google Scholar
  21. 21.
    Morimoto, M., Most of the standard spheres have one fixed point actions of A 5. II, preprint.Google Scholar
  22. 22.
    Oliver, R., “Whitehead Groups of Finite Groups,” London Math. Soc. Lecture Note Series 132, Cambridge University Press, Cambridge, 1988.CrossRefzbMATHGoogle Scholar
  23. 23.
    Petrie, T., One fixed point actions on spheres, I, Adv. Math. 46 (1982), 3–14.MathSciNetCrossRefzbMATHGoogle Scholar
  24. 24.
    Petrie, T., One fixed point actions on spheres, II, Adv. Math. 46 (1982), 15–70.MathSciNetCrossRefzbMATHGoogle Scholar
  25. 25.
    Reiner, I., Class groups and Picard groups of group rings and order, Regional Conf. Ser. in Math. 26 (1976), A.M.S.Google Scholar
  26. 26.
    Reiner, I. and Ullom, S., Remarks on class groups of integral group rings, Symposia Mathematica (ed. by A. Dress) 13 (1974), 501–516, Academic Press, London.MathSciNetzbMATHGoogle Scholar
  27. 27.
    Shaneson, J., Wall's surgery obstruction groups for G × Z, Ann. Math. 90, (1969), 296–334.MathSciNetCrossRefzbMATHGoogle Scholar
  28. 28.
    Springer, T.A., “Invariant Theory,” Lecture Notes in Mathematics 585, Springer, Berlin-Heidelberg-New York-Tokyo, 1977.zbMATHGoogle Scholar
  29. 29.
    Stein, E., Surgery on products with finite fundamental group, Topology 16 (1977), 473–493.MathSciNetCrossRefzbMATHGoogle Scholar
  30. 30.
    Uchida, F., “Transformation Groups and Cobordism Theory,” (Japanese) Kinokuniya Suugakusousho 2, Kinokuniya, Tokyo, 1974.Google Scholar
  31. 31.
    Wall, C. T. C., Classification of hermitian forms. VI Group rings, Ann. Math. 103 (1976), 1–80.MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer-Verlag 1991

Authors and Affiliations

  1. 1.Department of Mathematics, College of Liberal Arts & SciencesOkayama UniversityOkayamaJapan
  2. 2.Department of Mathematics, Faculty of ScienceOsaka UniversityOsakaJapan

Personalised recommendations