Advertisement

Homotopy ring spaces and their matrix rings

Homotopy Theory
Part of the Lecture Notes in Mathematics book series (LNM, volume 1474)

Keywords

Ring Theory Monoid Structure Path Component Ring Space Homotopy Inverse 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [BV1]
    J.M. Boardman and R.M. Vogt, Homotopy everything H-spaces, Bull. Amer. Math. Soc. 74 (1968), 1117–1122.MathSciNetCrossRefzbMATHGoogle Scholar
  2. [BV2]
    J.M. Boardman and R.M. Vogt, Homotopy invariant structures on topological spaces, Lecture Notes in Mathematics No. 347 (Springer, Berlin-New York, 1973).zbMATHGoogle Scholar
  3. [DK]
    W.G. Dwyer and D.M. Kan, Function complexes in homotopical algebra, Topology 19 (1980), 427–440.MathSciNetCrossRefzbMATHGoogle Scholar
  4. [FSSV]
    Z. Fiedorowicz, R. Schwänzl, R. Steiner, and R.M. Vogt, Non-connective delooping of K-theory of an A ring space, Math. Z. 203 (1990), 43–57.MathSciNetCrossRefzbMATHGoogle Scholar
  5. [HH]
    J.C. Hausmann and D. Husemoller, Acyclic maps, Enseignement Math. 25 (1979), 53–75.MathSciNetzbMATHGoogle Scholar
  6. [I]
    K. Igusa, On the algebraic K-theory of A ring spaces, Lecture Notes in Mathematics No. 967 (Springer, Berlin-New York, 1982), 146–194.CrossRefzbMATHGoogle Scholar
  7. [M1]
    J.P. May, The geometry of iterated loop spaces, Lecture Notes in Mathematics No. 171 (Springer, Berlin-New York, 1972).zbMATHGoogle Scholar
  8. [M2]
    J.P. May (with contributions by N. Ray, F. Quinn, and J. Tornehave), E ring spaces and E ring spectra, Lecture Notes in Mathematics No. 577 (Springer, Berlin-New York, 1977).CrossRefGoogle Scholar
  9. [M3]
    J.P. May, A ring spaces and algebraic K-theory, Lecture Notes in Mathematics No. 658 (Springer, Berlin-New York, 1978), 240–315.Google Scholar
  10. [M4]
    J.P. May, Mulitplicative infinite loop space theory, J. Pure Appl. Algebra 26 (1982), 1–69.MathSciNetCrossRefzbMATHGoogle Scholar
  11. [MT]
    J.P. May and R. Thomason, The uniqueness of infinite loop space machines, Topology 17 (1978), 205–224.MathSciNetCrossRefzbMATHGoogle Scholar
  12. [Mi]
    R.J. Milgram, The bar construction and abelian H-spaces, Illinois J. Math. 11 (1967), 242–250.MathSciNetzbMATHGoogle Scholar
  13. [SV1]
    R. Schwänzl and R.M. Vogt, Homotopy Invariance of A and E ring spaces, Proc. Conf. Alg. Topology, Aarhus 1982, Lecture in Mathematics No. 1051 (Springer, Berlin-New York, 1984), 442–481.zbMATHGoogle Scholar
  14. [SV2]
    R. Schwänzl and R.M. Vogt, Matrices over homotopy ring spaces and algebraic K-theory, OSM, P73 (1984), Universität Osnabrück (preprint).Google Scholar
  15. [SV3]
    R. Schwänzl and R.M. Vogt, E spaces and injective Γ-spaces, manuscripta math. 61 (1988), 203–214.MathSciNetCrossRefzbMATHGoogle Scholar
  16. [SV4]
    R. Schwänzl and R.M. Vogt, E monoids with coherent homotopy inverses are abelian groups, Topology 28 (1989), 481–484.MathSciNetCrossRefzbMATHGoogle Scholar
  17. [SV5]
    R. Schwänzl and R.M. Vogt, Homotopy homomorphisms versa hammocks, to appear.Google Scholar
  18. [SV6]
    R. Schwänzl and R.M. Vogt, Basic constructions in the algebraic K-theory of homotopy ring spaces, to appear.Google Scholar
  19. [Se]
    G. Segal, Categories and cohomology theories, Topology 13 (1974), 293–312.MathSciNetCrossRefzbMATHGoogle Scholar
  20. [Stb]
    M. Steinberger, On the equivalence of the two definitions of the algebraic K-theory of a topological space, Lecture Notes in Mathematics No, 763 (Springer, Berlin-New York, 1979), 317–331.zbMATHGoogle Scholar
  21. [ST1]
    R. Steiner, A canonical operad pair, Math. Proc. Camb. Phil. Soc. 86 (1979), 443–449.MathSciNetCrossRefzbMATHGoogle Scholar
  22. [St2]
    R. Steiner, Infinite loop structures on the algebraic K-theory of spaces, Math. Proc. Camb. Phil. Soc. 90 (1981), 85–111.MathSciNetCrossRefzbMATHGoogle Scholar
  23. [Th]
    R. Thomason, Uniqueness of delooping machines, Duke, Math. J. 46 (1979), 217–256.MathSciNetCrossRefzbMATHGoogle Scholar
  24. [V]
    R.M. Vogt, Convenient categories of topological spaces for homotopy theory, Arch. Math. 22 (1971), 545–555.MathSciNetCrossRefzbMATHGoogle Scholar
  25. [W1]
    F. Waldhausen, Algebraic K-theory of topological spaces I, Proc. Symp. Pure Math. 32 (1978), 35–60.MathSciNetCrossRefzbMATHGoogle Scholar
  26. [W2]
    F. Waldhausen, Algebraic K-theory of topological spaces II, Lecture Notes in Mathematics No. 763 (Springer, Berlin-New York, 1979), 356–394.zbMATHGoogle Scholar
  27. [Wo]
    R. Woolfson, Hyper Γ-spaces and hyperspectra, Quart. J. Math. 30 (1979), 229–255.MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer-Verlag 1991

Authors and Affiliations

There are no affiliations available

Personalised recommendations